Низкоомный омметр из мультиметра своими руками. Электронный омметр «на скорую руку. Что измеряет прибор омметр


Наука начинается с умения измерять.
Д.И.Менделеев

В практике радиолюбителя приходится встречаться с необходимостью измерения низкоомных сопротивлений (до 1 Ом). Решить эту задачу и предназначен простой миллиомметр. Этим устройством можно с достаточной для радиолюбителя точностью измерять сопротивления от 0,0001 до 1 Ома.
При измерении малых сопротивлений с помощью цифровых мультиметров последовательно с измеряемым сопротивлением, назовём его Rx, неизбежно включено сопротивление соединительных проводов, переходное сопротивление входных клемм или гнёзд, контактов переключателя и т.п. Это сопротивление (Rпр.) находится в пределах 0,1…0,4 Ом. Вследствие вышеуказанных причин, реально измеренное сопротивление будет больше Rx на некоторую величину (Rx+Rпр.). Погрешность может доходить до 50 % при измерении очень малых сопротивлений. Для больших сопротивлений эта ошибка невелика, и её можно не учитывать.
Из изложенного понятно, что надо исключить влияние соединительных проводов и т.п. на результат измерения очень малых сопротивлений. Существует метод измерения низкоомных сопротивлений по 4-зажимной схеме на постоянном токе. Применение данного метода полностью исключает влияние соединительных проводов на результат измерения малых сопротивлений. Этот метод используется в данном миллиомметре. Кратко рассмотрим суть метода измерения по 4-зажимной схеме.


Рисунок 1

На рис.1 (слева) приведена схема измерения сопротивления по 2-зажимной схеме. Красным цветом показан путь измерительного тока. Как видим, ток протекает и через измеряемый резистор и через сопротивление проводов (Rпр) мультиметра, что вносит погрешность в результат измерения. Сопротивление вольтметра не оказывает влияния на измерение Rx, так как обладает очень большим (до 10 МОм) внутренним сопротивлением Rвх. На рис.1 (справа) показана 4-зажимная схема измерения. Из схемы понятно, что сопротивление проводов не оказывает влияния на результат измерения, так как включено последовательно с очень большим внутренним сопротивлением вольтметра. Измерительный ток протекает только через резистор Rx.

Вот схема миллиомметра (рис.2).


Рисунок 2

Источником питания схемы является батарея с напряжением 9 В. Выключателем SB напряжение от батареи подаётся на микросхему стабилизатора напряжения типа 7806. Конденсатор С1 служит для подавления скачков напряжения. Резисторы R1, VR2 необходимы для установки выходного напряжения микросхемы в пределах 6 В. Потенциометром VR2 устанавливается точная величина выходного напряжения величиной 6В. Потенциометром VR3 устанавливается выходной ток, протекающий через измеряемый резистор Rx равный 100мА (0,1 А). Поскольку резистор VR3 имеет относительно большое сопротивление по сравнению с измеряемым Rx, то погрешность, возникающая при этом вследствие наличия сопротивлений Rx (от 1 мОм до 1 Ом), будет оказывать влияние на величину тока 100мА в пределах не более 2%.

Конструкция миллиомметра
Внешний вид и вид на монтаж деталей миллиомметра показан на фото 1, 2 и 3. Монтаж деталей выполнен навесным способом, микросхема на радиатор не устанавливалась. В качестве потенциометров VR2, VR3 использованы многооборотные резисторы для более точной установки напряжения и тока. Корпус прибора пластмассовый, размеры 11*6*4 см. Клеммы К1 иК2 металлические. Выключатель питания типа МТ-1.


Фото 1



Фото 2



Фото 3

Подготовка к измерению сопротивления
Подсоединить щупы цифрового вольтметра к клеммам К1 и К2. Подать напряжение от источника питания на схему, включив выключатель SB. Потенциометром VR2 установить выходное напряжение величиной 6 В при неподключённом резисторе Rx. Далее, отключив SB, переключаем мультиметр на измерение тока (щупы остаются на прежнем месте), включаем SB и потенциометром VR3 устанавливаем величину выходного тока 0,1А.


Фото 4



Фото 5

Проведение измерений
Для начала возьмём несколько резисторов известной величины (0,1; 0,2; 0,5 Ом) и измерим их сопротивление, чтобы убедиться в работоспособности миллиомметра.


Фото 6

Не включая питание под клеммы К1 и К2, зажимаем выводы измеряемого сопротивления. Щупы цифрового вольтметра устанавливаем в гнёзда клемм К1 и К2, а предел измерения на отметку 200мВ. Включаем питание и считываем показания прибора.


Фото 7

Допустим, величина измеренного напряжения 22,3 мВ. Ток ранее был установлен 100мА. Делим напряжение на ток и получаем искомое сопротивление. В нашем случае: Rx=22,3: 100= 0,223 Ом. Конечно, принято делить вольты на амперы, чтобы получить Омы, но так удобнее, не надо переводить мВ и мА в вольты и амперы. Точно также измеряем другие эталонные резисторы. Но всё-таки вспомним, что 1 В-1000мВ; 100мВ-0,1В; 10мВ-0,01В; 1мВ-0,001В; 1А-1000мА; 100мА-0,1А. В моём мультиметре наименьший предел измерения - 200мВ, цена деления - 0,1 мВ. Входное сопротивление - около 10 МОм. То есть теоретически можно измерить сопротивление величиной 0,001 Ом (1мОм). Вольтметры с низким входным сопротивлением для наших измерений не годятся.
Итак, мы определили, что проведенные измерения дали реальный результат. Теперь переходим к измерению неизвестного сопротивления. В качестве неизвестных сопротивлений будем использовать шунты из разобранных авометров. При измерении сопротивления самого большого шунта падение напряжения составило 0,5 мВ, ток 100 мА.


Фото 8

Величина сопротивления шунта, рассчитанная по закону Ома, получилась 0,005 Ом. Сопротивление малого шунта, измеренного миллиомметром, равно 0,212 Ом (падение напряжения - 21,2 мВ).
Практическое применение миллиомметр может найти при подборе шунтов для зарядных устройств, измерении сопротивлений в оконечных каскадах усилителей низкой частоты и других устройств, где необходимо измерение малых сопротивлений (переходное сопротивление контактов выключателей, реле и др.).
Измерение низкоомных сопротивлений можно производить и при токах более 0,1 А. Для этого необходимо собрать стабилизатор тока на соответствующий ток. Схемы стабилизаторов приведены на рис.3.


Рисунок 3

Стабилизатор включается в схему вместо потенциометра VR3. Конечно, это повлечёт за собой установку микросхемы и транзистора на радиаторы соответствующего размера, а также к увеличению размеров прибора.
Сопротивления менее 1мОм (1000 мкОм) измеряют с помощью микроомметров. Измерительный ток может быть величиной до 150 А. Напряжение большой роли не играет.
Если необходимо изготовить шунт для зарядного устройства, а нихрома, константана, манганина нет, то можно воспользоваться шпилькой подходящего диаметра, как показано на фото 9.


Фото 9

Материал шпильки - сталь, бронза, медь и т.п. Передвигая один из контактов по шпильке добиваются нужного сопротивления шунта. Расчёт сопротивления шунта несложен. Будут вопросы - обсудим.

Самодельные измерительные приборы

Журнал Радио 1 номер 1998 год
В Сычев. Москва

При изготовлении электроизмерительных приборов могут возникнуть некоторые трудности, связанные с изготовлением приборных шунтов. Эти шунты обычно низкоомные. и подобрать их нужно тщательно, так как от этого зависит точность измерителя. Для этого предлагается изготовить простой электронный омметр, которым можно измерить малые сопротивления при линейной шкале на четырех пределах: 10, 25.100 и 250 Ом.

Схема прибора

Схема прибора изображена на рисунке. Он состоит из источника стабилизированного тока на транзисторе VT1. режим работы которого задают стабилитрон VD1 и резисторы R3. R4, R5, и вольтметра (микроамперметр РА1 и резисторы R1, R2).

Коллекторный ток транзистора VT1 создает на резисторе Rx напряжение, пропорциональное его сопротивлению. Поэтому, если откалибровать (т.е. установить стрелочный указатель микроамперметра на последнее деление шкалы) измерительную часть по определенному образцовому резистору Roop. то измеряемое сопротивление можно будет считывать по линейной шкале измерительного прибора.

Работа с прибором сводится к следующему. К зажимам "Rx" присоединяют проверяемый резистор (например, изготавливаемый шунт), а к зажимам "Ro6p" -образцовый резистор, соответствующий выбранному пределу измерения. Переключатель SA2 переводят на соответствующий предел измерения, а переключатель SA1 - в положение "К" (калибровка). После подачи напряжения питания нажатием на кнопку SB1 подстроечным резистором R4 устанавливают стрелочный указатель на последнее деление шкалы. Затем переключатель SA1 переводят в положение "И" (измерение) и измеряют сопротивление Rx. Точность измерения в основном будет зависеть от точности образцовых резисторов.

Если во вспомогательном приборе использовать источник питания с напряжением 8...9 В или менее чувствительную головку, то стабилитрон Д814А нужно заменить на КС139А или КС147А, сопротивление резистора R5 уменьшить до 100 Ом. a R4 - до 470 - 680 Ом. Кроме того, если сопротивление образцового резистора не соответствует точно необходимому пределу измерения, то калибровку измерителя допустимо произвести с установкой показания, соответствующего номинальному значению этого резистора, если оно составляет не менее 80% от предела.

В приборе могут быть применены образцовые резисторы типов МТ, БЛП, С2-29В. С2-36. С2-14: резисторы МЛТ (R1. R3. R4. R5): резистор R2 типов СПО-0.5, CП3-4б или аналогичный; транзисторы серий КТ814. КТ816 с коэффициентом передачи тока базы более 50. В качестве микроамперметра РА1 применима измерительная головка, которая будет установлена в изготавливаемый прибор (например, 50 или 250 мкА). Переключатели SA1 и SA2 - тумблеры типа ТВ2-1. Вообще говоря, переключатель SA1 можно и исключить, оставив одну пару зажимов, к которым сначала подключить резистор Rocp. а после калибровки - резистор Rx.

В случае применения в приборе более распространенных транзисторов структуры п-р-п следует изменить полярность включения источника питания стабили трона и микроамперметра.

Домашний мастер при ремонте квартиры своими руками сталкивается с необходимостью подключения светильников, розеток и выключателей по разным схемам. Такая деятельность требует выполнения электрических измерений и знания основных правил безопасности при работе под напряжением.

Наши советы помогут вам оптимально выбрать мультиметр для этих целей и понять основные правила безопасной работы с ним как в бытовой электропроводке, так и для ремонта подключаемых к ней приборов.

В материале статьи сравниваются два типа устройств измерителей: стрелочных аналоговых и цифровых. Это позволит оценить различные технологии замеров, сравнить их возможности, сделать выбор подходящей конструкции.


Назначение

Составное слово мультиметр обозначает своей первой частью «мульти» - много функций, которые выполняет этой прибор, а второй «метр» – измерение электрических величин.


Он позволяет определять:

  • значение действующего напряжения;
  • силу протекающего тока;
  • электрическое сопротивление подключенной цепи;
  • некоторые другие параметры.

Следует учесть, что прибор может иметь другие названия:

  1. авометр, обозначающее сокращение от ампер, вольт, ом измерение;
  2. или тестер, присвоенное первым аналоговым моделям.

На техническом языке его называют прибор многофункциональный измерительный.

Принципы измерения электрических величин

Поясняющая картинка из интернета с человечками призвана объяснить взаимосвязь процессов, происходящих в электрике, которые позволяет анализировать мультиметры любой конструкции.

Напряжение источника в вольтах старается пропихнуть ток в амперах через оказываемое ему противодействие сопротивлением в омах. Для анализа этих трех задач в мультиметр включены 3 отдельных измерительных прибора:

  • амперметр;
  • вольтметр;
  • омметр.

Кратко рассмотрим их функции.

Как работает амперметр

За основу действия аналоговых приборов принята измерительная головка магнитоэлектрической системы.

При протекании через нее электрического тока поворачивается подвижная рамка с противодействующей пружиной и прикрепленной к ним стрелкой, указывающей на шкале его силу в микроамперах - тысячных долях ампера. На таком диапазоне протекают токи через измерительную головку.

Однако амперметр замеряет не доли ампера, а целые и даже значительно большие значения. Такие величины тока способны выжечь все токопроводящие магистрали головки. Чтобы этого не произошло, их ограничивают параллельным подключением калиброванного электрического сопротивления, называемого шунтом.

Принцип шунтирования дополнительным сопротивлением уменьшает величину протекающего через головку тока и делает его пропорциональным входному значению. За счет этого шкалу градуируют в амперах, а не в тысячных его долях.

В цифровых приборах используются датчики токи, которые работают по микропроцессорным технологиям.

Устройство вольтметра

Та же измерительная головка подключается последовательно к добавочным сопротивлениям - токоограничивающим резисторам. Шкала прибора градуируется в вольтах.


Переключатель режимов у амперметра и вольтметра позволяет расширять пределы измерения.

Цифровой вольтметр работает от датчика напряжения.

Конструкция омметра

Принцип замера сопротивления раскрыт в статье о .

Омметр также работает с помощью измерительной головки.

Для этого используется встроенный источник напряжения, который выдает строго эталонную величину. Ее при подготовке омметра к работе необходимо вручную откалибровать.

Замеряемое сопротивление подключается к гнездам прибора. Через него проходит ток, ограничивающийся в зависимости от номинала резистора. Он отклоняет стрелку омметра на величину, пропорциональную значению электрического сопротивления.

Шкала омметра просто градуируется в омах.

Цифровые приборы вычисляют значение сопротивления по результатам информации, получаемой от датчиков тока и напряжения, но работают также от встроенного источника питания. Ручная калибровка им не требуется.

Разновидности мультиметров

Аналоговые приборы

Рассмотрим на примере тестера Ц4324.


Сразу бросаются в глаза многофункциональная шкала в несколько рядов и переключатели режимов с большим рабочим диапазоном.

Заводская схема внутренних соединений представлена на фото ниже.

Более подробно назначение шкалы измерительной головки показано на картинке.

При каждом замере необходимо анализировать положение стрелки на определённом диапазоне, соответствующем роду току и проверяемому сигналу.

Положения центрального переключателя разбиты на три главных сектора (амперметра, вольтметра и омметра) выделенные красными стрелками. При работе следует определять не только диапазон измеряемой величины, но и форму сигнала.

Цифровые приборы

Внутренняя конструкция этого типа мультиметра намного сложнее, а внешние органы выполнены проще для пользователя. В качестве образца выберем одну из типовых моделей с минимальным количеством автоматических настроек.

Вместо стрелочного указателя и сложной шкалы работает дисплей, а положением центрального переключателя можно выбрать все режимы измерения в любом секторе.

Подключение измерительных проводов выполняется к двум гнездам из трех:

  • центральное - общее;
  • левое - используется для замера токов более 10 ампер;
  • правое - во всех остальных случаях.

Способы электрических замеров

Любой мультиметр сам ничего не измеряет. Он показывает только те величины, которые подготовил пользователь в созданном им режиме. Ошибки показаний чаще всего связаны с невнимательной работой человека.

Рассмотрим однотипные операции, которые необходимо выполнять на стрелочном и цифровом мультиметре.

Измерения тестером Ц4324

Замер напряжения

Выбираем соответствующий режим нажатием средней кнопки снизу и выставляем предел измерения больший, чем напряжение у замеряемой батарейки - 3 V.


Потребуется оценить полярность подключения проводов. Если пустить ток в обратном направлении через измерительную головку, то стрелка просто упрется в стопор слева от нуля. Замер не получится.

Для снятия отсчета необходимо выбрать правильно ту шкалу напряжения, на которой стоит знак постоянного тока. Следует учесть ее кратность на соответствующем положении переключателя.

Обращаем внимание, что подобная операция относится к опасной и требует повышенного внимания.


Нажимаем до фиксации правую кнопку снизу со значком «~». Выбираем центральным переключателем соответствующий режим вольтметра и на нем положение 300 V. Только после этого устанавливаем концы в контакты розетки.

Со шкалы снимаем показания 250 V. Методика пользования ею та же, как и в предыдущем случае.

Замер тока

Положение переключателей и работа со шкалой выполняется по предыдущей методике.


Пальчиковая батарейка на 1,5 V выдала на лампочку 6,3 V ток 142 мА.

Замер сопротивления

В этом режиме важно:

  • проверить выставление стрелки на ноль, используя регулятор натяжения пружины измерительной головки, расположенный под стрелкой;
  • установить калиброванную величину источника питания ручкой потенциометра «Установка 0», размещенного в самой нижней части на лицевой стороне;
  • обеспечить .

Для измерения потребуется нажать одновременно две левых кнопки и установить переключатель на значок омов. Отсчет показания по шкале Ω получился 1,5. Такое сопротивление у нити накаливания в холодном состоянии.

Режим измерения сопротивлений мультиметром создан для проверки резисторов и других элементов радиоэлектронных устройств. Он не предназначен для оценки качества изоляции диэлектрического слоя. Мощность источника питания недостаточна для подобного измерения.

Оценку сопротивления изоляции кабелей и проводов выполняют специальными приборами, питающимися от мощных источников: ручных генераторов или бытовой сети 220 либо встроенных преобразователей с комплектом батареек. Их называют мегаомметрами.

Три приведенных опыта с малогабаритной лампочкой накаливания и батарейкой позволяют показать, что мощность источника энергии и потребителя следует правильно подбирать по нагрузке и напряжению.

1,5 V у батарейки и 6,3 у лампочки - явное несоответствие. Источник работает в аварийном режиме и не справляется с задачей: нить еле-еле светится. Ему искусственно создан режим перегрузки.

Аналогичный случай может произойти и в бытовой сети 220, где , снимающий питание с оборудования с выдержкой времени.

Подключая любой потребитель в электрическую сеть всегда оценивайте его возможность надежной работы и способность защит устранять аварийные ситуации.

Измерения цифровым мультиметром

Замер напряжения

Работа с источниками постоянного тока

Потребуется только установить центральный переключатель в положение замера напряжения на соответствующем пределе (=2 V), вставить провода в гнезда прибора и подключить их к проверяемой батарейке. Результат сразу отображается на табло.

Если полярность подключения источника к мультиметру перепутана, то на табло отобразится знак минус. Значит замер надо повторить, перевернув провода на батарейке.

Этот прием используют для определения полярности источника.

Когда замер выполняется на большем пределе, то точность результата будет занижена. Необходимо соблюдать соответствие величин.

Работа с источниками переменного тока

Вначале переключатель режимов устанавливают в положение «~600 V», а затем проверяют напряжение в розетке.


У нас получился результат 231 вольт.

Замер тока

Мультиметр врезают в цепь тока, предварительно переключив его в режим амперметра и установив на соответствующую позицию измерений. Мы имеем показание 145 мА на пределе 200.


Знак минус перед значением тока свидетельствует о том, что полярность подключения проводов прибора в схему перепутана. Ток через него идет в обратном направлении.

Электрикам, часто сталкивающимися с измерениями, рекомендуем приобрести мультиметр с разъемным магнитопроводом трансформатора тока -клещами. Им удобно выполнять безразрывное подключение и быстрый замер.

Замер сопротивления

Центральный переключатель мультиметра установлен в положение 200 Ω, а результат 9,75 отображен на табло.


Таким же способом прибор работает на шкале kΩ. На приведенном фото даже завышен предел измерения сопротивления. На результате это особенно не сказывается, хоть и влияет.

Режим прозвонки

Цифровой мультиметр в отличие от аналогового стрелочного имеет такую дополнительную функцию. Она позволяет просто определять наличие электрического контакта внутри проверяемой цепи.

В замкнутой и разомкнутой схеме меняется индикация на табло, а у многих моделей приборов дополнительно появляется звуковой сигнал.

Режим прозвонки создан для анализа маленьких сопротивлений, характерных для цепей тока. Но им не стоит пользоваться в цепях напряжения. Особенно он удобен для проверки полупроводниковых элементов.

Еще одна полезная функция для радиолюбителей, называемая на их сленге «пищалкой». Мультиметр выдает высокочастотные сигналы, которые позволяют проверять тракты звуковых усилителей и различные каналы передатчиков или приемников.

У владельцев стрелочных приборов такой функции нет. Они вынуждены делать подобный генератор своими руками.

Проверка транзисторов

Еще одна полезная функция цифрового мультиметра, которая также встречается на более сложных конструкциях стрелочных моделей.

Для проверки биполярного транзистора достаточно правильно вставить его ножки в соответствующее гнездо, учитывающее структуру p-n-p или n-p-n полупроводникового перехода. Для этого создано четыре контактных отверстия, в которые устанавливают ножки за счет поворота корпуса в одну из сторон.

У исправного транзистора сразу высвечивается коэффициент усиления h21.


Эта же функция на стрелочных тестерах требует снятия показаний и выполнения математических расчетов.

Основные правила безопасности

Мультиметр создан для измерения электрических величин и позволяет работать под напряжением. Его корпус и провода выполнены с , так и по нормативам .

Качество защиты цифровых приборов выше, а их дизайн более продуман. Однако, даже при их пользовании следует быть внимательным и осторожным, соблюдать рекомендации производителя.

Любой цифровой мультиметр можно вывести из строя неправильным обращением при его несомненных преимуществах перед стрелочным прибором:

  • работе встроенных защит «от дурака», которые отключают схему от проникновения опасных токов, созданных при всех режимах измерения;
  • повышенной диэлектрической прочности изоляции.

Стрелочные старые тестеры требуют еще больше внимания: при неправильном подключении к цепям токам или напряжения, особенно в бытовой сети 220, элементы их внутренней схемы выгорают. Если калибровочные резисторы еще можно заменить, то с контактами переключателей и кнопок ситуация ремонта усугубляется.

Но чаще всего у них выходит из строя токопроводящая пружинка или обмотка измерительной головки. В этой ситуации ремонт обходится дороже покупки нового цифрового мультиметра.

ИСТОЧНИК: Журнал Радио №1 1998 г.

В. СЫЧЕВ г. Москва

При изготовлении электроизмерительных приборов могут возникнуть некоторые трудности, связанные с изготовлением приборных шунтов. Эти шунты обычно низкоомные. и подобрать их нужно тщательно, так как от этого зависит точность измерителя. Для этого предлагается изготовить простой электронный омметр, которым можно измерить малые сопротивления при линейной шкале на четырех пределах: 10, 25.100 и 250 Ом.

Схема прибора изображена на рисунке. Он состоит из источника стабилизированного тока на транзисторе VT1. режим работы которого задают стабилитрон VD1 и резисторы R3. R4, R5, и вольтметра (микроамперметр РА1 и резисторы R1, R2).

Коллекторный ток транзистора VT1 создает на резисторе Rx напряжение, пропорциональное его сопротивлению. Поэтому, если откалибровать (т.е. установить стрелочный указатель микроамперметра на последнее деление шкалы) измерительную часть по определенному образцовому резистору Roop. то измеряемое сопротивление можно будет считывать по линейной шкале измерительного прибора.

Работа с прибором сводится к следующему. К зажимам "Rx" присоединяют проверяемый резистор (например, изготавливаемый шунт), а к зажимам "Ro6p" -образцовый резистор, соответствующий выбранному пределу измерения. Переключатель SA2 переводят на соответствующий предел измерения, а переключатель SA1 - в положение "К" (калибровка). После подачи напряжения питания нажатием на кнопку SB1 подстроечным резистором R4 устанавливают стрелочный указатель на последнее деление шкалы. Затем переключатель SA1 переводят в положение "И" (измерение) и измеряют сопротивление Rx. Точность измерения в основном будет зависеть от точности образцовых резисторов.

Если во вспомогательном приборе использовать источник питания с напряжением 8...9 В или менее чувствительную головку, то стабилитрон Д814А нужно заменить на КС139А или КС147А, сопротивление резистора R5 уменьшить до 100 Ом. a R4 - до 470 - 680 Ом. Кроме того, если сопротивление образцового резистора не соответствует точно необходимому пределу измерения, то калибровку измерителя допустимо произвести с установкой показания, соответствующего номинальному значению этого резистора, если оно составляет не менее 80% от предела.

В приборе могут быть применены образцовые резисторы типов МТ, БЛП, С2-29В. С2-36. С2-14: резисторы МЛТ (R1. R3. R4. R5): резистор R2 типов СПО-0.5, CП3-4б или аналогичный; транзисторы серий КТ814. КТ816 с коэффициентом передачи тока базы более 50. В качестве микроамперметра РА1 применима измерительная головка, которая будет установлена в изготавливаемый прибор (например, 50 или 250 мкА). Переключатели SA1 и SA2 - тумблеры типа ТВ2-1. Вообще говоря, переключатель SA1 можно и исключить, оставив одну пару зажимов, к которым сначала подключить резистор Rocp. а после калибровки - резистор Rx.

В случае применения в приборе более распространенных транзисторов структуры п-р-п следует изменить полярность включения источника питания стабили трона и микроамперметра.

Диапазон измеряемых на практике сопротивлений условно делят на три части: малые сопротивления (менее 10 Ом), средние сопротивления (от 10 Ом до 1 МОм) и большие сопротивления (более 1 МОм). Эти границы достаточно приблизительны и могут различаться. Наиболее распространенные аналоговые и цифровые тестеры и мультиметры предназначены, в основном, для измерения средних сопротивлений. Однако необходимость измерения малых сопротивлений (менее 1 Ом) возникает достаточно часто, например, при проверке обмоток трансформаторов, контактов реле, шунтов и др.

«Измерение сопротивлений основано на преобразовании их величины в ток или напряжение, поэтому при малом сопротивлении получается небольшое падение напряжения либо ток мало отличается от режима короткого замыкания. Если увеличить измерительный ток, на измеряемом сопротивлении может рассеиваться недопустимо большая мощность, в результате чего может «сгореть» резистор. Кроме того, за счет нагрева резистора меняется его сопротивление, что приводит к дополнительной погрешности измерения (температурная погрешность)». Это выдержка одной из статей, которую я нашел в сети. Попробуем разобраться, так ли это страшно на самом деле.
Ну с температурной погрешностью и со сгоранием в нашем случае мы повременим, так как в основном резисторы, сопротивление которых будем измерять, изготавливаются из проволоки. Теперь немного посчитаем. В приборе, схему которого я хочу предложить используется два режима измерения сопротивления. При стабильном токе в 1А (шкала 1 деление = 0,002 Ом) и при стабильном токе 0,1А (шкала 1 деление = 0,02 Ом). Это для головки показанной на фото 1. Как видно из фото, измерительная головка имеет ток полного отклонения 100мкА. Цена маленького деления — 2мкА.

И так, при токе в 0,1А прибор будет измерять сопротивление с 0,02 Ома до 1-го Ома. Т.е. отклонение стрелки на последнее деление шкалы будет соответствовать одному Ому. Допустим меряем 1 Ом. Р=I2 R. Мощность выделяемая на измеряемом резисторе будет равна 0,01Вт. Теперь посчитаем мощность, которая может выделиться на измеряемом резисторе сопротивлением 0,1 Ом при токе 1А. Р = 1 1 0,1 = 0,1Вт = 100мВт. Так что конец Света отменяется. Ток в 1А и 0,1А я выбрал для простоты расчетов, нам же потребуется ток немного другой величины – это связано с конкретным сопротивлением рамки измерительной головки.

Стабилизация тока в схеме осуществляется транзистором VT1 TIP107 и микросхемой DA2 К153УД2. Выбор этой микросхемы связан с ее возможностью работать при входных напряжениях близких к напряжению питания. Транзистор TIP107 можно заменить на КТ973 с любой буквой. Принцип работы приборчика, как вы уже догадались, заключается в измерении падения напряжения на измеряемом сопротивлении при прохождении через его определенного стабильного тока. Какой ток нам нужен на самом деле? Сопротивление рамки у моего измерительного прибора равно 1200Ом, ток полного отклонения – 0,0001А, значит, если мы будем использовать эту головку в качестве вольтметра, нам потребуется подать на ее напряжение величиной = U = I R = 0,0001 1200 = 0,12В = 120мВ для отклонения стрелки на последнее деление шкалы. Это означает, что именно такое напряжение должно упасть на сопротивлении в 1 Ом на пределе измерения прибора от 0,02Ома до 1Ома. Значит на данном пределе измерения нам надо пропустить через измеряемый резистор стабильный ток величиной I = U/R = 0,12/1 = 0,12A = 120мА. Тоже самое можно рассчитать и для другого предела, там потребуется ток величиной 1,2А.

Идем дальше. Схема собрана. Перед первым включением тумблер SB1 надо разомкнуть, а резистор R2 выставить в среднее положение (резистор подстроечный многооборотный). Выходные клеммы прибора замкнуты контактами кнопки SB2. Головка пока не подключена. Параллельно резистору R4 = 1Ом подключаем мультиметр, включаем питание и резистором R2, выставляем на нем напряжение примерно 1,2В, что будет соответствовать току, проходящему через него, величиной в 1,2А. Подключаем к клеммам резистор величиной 1Ом, нажимаем на кнопку SB2 – падение напряжения на резисторе R4 не должно измениться, это будет говорить о том, что стабилизатор тока работает. Теперь подключаем эталонный резистор величиной 0,1 Ома. Я брал резистор С5-16МВ1 с процентным отклонением в 1%. Этого для радиолюбителя вполне достаточно. Я думаю, что многие из вас, так же как и я, вряд ли обращают внимания на процентное отклонение сопротивления используемых резистор, да если оно еще и закодировано латинскими буквами. Далее подключаем головку, опять жмем на кнопку «Измерение» и резистором R2 уже окончательно точно выставляем стрелку прибора на последнее деление шкалы. Это мы настроили предел измерения от 0,002 Ома до 0,1 Ома. После этого замыкаем тумблер SB1 и резистором R3 выставляем напряжение на резисторе R4 равное примерно 0,12В, что соответствует току стабилизации 0,12А. К клеммам подключаем якобы эталонный резистор 1 Ом, нажимаем на кнопку «Измерение» и опять же резистором R3 устанавливаем стрелку на последнее деление. Получили предел измерения от 0,02 Ома до 1 Ома. На этом регулировка закончена.

При сборке прибора транзистор VT1 и микросхему DA1 обязательно установите на радиаторы. На таком радиаторе, что показан на фото2, микросхема нагревается до температуры +42С при работе с током 1А. Контакты кнопки «Измерение» должны выдерживать с лихвой ток 1А. От качества этой кнопки напрямую зависит суровая жизнь измерительной головки. Если каким либо образом нарушится контакт, а к клеммам в это время не будет подключен измеряемый резистор, то все напряжение 5В попадет на головку. Операционный усилитель, резисторы и конденсатор установлены на небольшой печатной плате, остальные детали соединены проводниками. В качестве сетевого трансформатора можно применить ТВК -110Л1 от старых телевизоров. Правда придется в нем заменить провод вторичной обмотки на ток 1,2А. Как рассчитать диаметр провода можно посмотреть . Есть еще одна возможность улучшить прибор – сделать его приставкой к цифровому мультиметру — использовать мультиметр вместо измерительной головки, тогда на пределе измерения напряжения оного — 200мВ, можно будет измерять сопротивление резисторов… сейчас посчитаем. Работаем со стабильным током 0,1А, который протекает по измеряемому резистору. Мультиметр показывает 1мВ = 0,001В, значит сопротивление резистора будет равно R = U/I = 0,001В/0,1А = 0,01 Ом. Для тока 1А и при показаниях мультиметра опять таки же 1мВ, сопротивление измеряемого резистора будет = 0,001/1 = 0,001Ом. У меня мультиметр измеряет напряжение до 0,1мВ, значит я могу измерять сопротивления до 0,0001 Ома. К недостаткам этого прибора можно отнести неудобство пользования. Им нельзя например замерить активное сопротивление обмотки двигателя или трансформатора на предмет межвиткового замыкания, потому как нет щупов. Ну все равно во многих случаях он может быть полезен. Успехов всем. До свидания. К.В.Ю. Скачать рисунок печатной платы.