Какую ошибку при измерении допускают микрометрические инструменты. Микрометр - это что такое? Устройство и цена микрометра. Как производится измерение микрометром. Устройство и применение микрометров



Микрометрические инструменты

К микрометрическим инструментам относятся гладкие микрометры, микрометрические нутромеры, глубиномеры, а также рычажные микрометры, которые предназначены для абсолютных измерений наружных и внутренних размеров, высот уступов, глубин отверстий и т. д.
Принцип действия этих инструментов основан на использовании винтовой пары (винт-гайка) для преобразования вращательного движения микровинта в поступательное перемещение.
Цена деления таких инструментов 0,01 мм .

Классическая конструкция микрометра включает скобу с запрессованной неподвижной пяткой и стеблем (иногда стебель присоединяют к скобе резьбой) . Внутри стебля с одной стороны имеется микрометрическая резьба с шагом 0,5 мм , а с другой – гладкое цилиндрическое отверстие, обеспечивающее точное направление перемещения микровинта.
На винт насажен барабан, соединенный с трещоткой. Трещотка имеет на торце односторонние зубья, к которым пружиной прижимается штифт, обеспечивающий постоянное усилие измерения. Стопорное устройство служит для закрепления винта в нужном положении.

Отсчетное устройство микрометрических инструментов состоит из двух шкал: продольной и круговой. Продольная шкала имеет два ряда штрихов, расположенных по обе стороны горизонтальной линии и сдвинутых один относительно другого на 0,5 мм . Оба ряжа штрихов образуют одну продольную шкалу с ценой деления 0,5 мм , равной шагу микровинта.
Круговая шкала обычно имеет 50 делений (при шаге винта Р = 0,5 мм ) .
По продольной шкале отсчитывают целые миллиметры и 0,5 мм , по круговой шкале – десятые и сотые доли миллиметра.

Конструкция микрометра впервые была запатентована французским изобретателем Жаном Лораном Палмером в 1848 году под названием «круговой штангенциркуль с круговым нониусом». Однако серийное производство микрометров началось лишь через несколько лет, - после посещения двумя американскими инженерами Д. Брауном и Л. Шарле Парижской выставки, где они увидели изобретение Ж. Палмера и организовали его серийным выпуск.

Микрометры – очень популярный инструмент для измерения наружных диаметров, толщин и т.п. Благодаря простой конструкции, удобству в обращении, быстроте в работе и достаточно высокой точности измерений, они – самые употребляемые цеховые инструменты для линейных измерений. Каждый станочник, слесарь, технолог и конструктор имеет собственный микрометр. Большое разнообразие конструкций, позволяющие измерять самые разные наружные поверхности делают их универсальными инструментами.
Изготавливают микрометры многие зарубежные и отечественные фирмы – Mitutoyo (Япония) , Tesa (Швейцария) , Carl Mahr (Германия) , Челябинский инструментальный завод (ЧИЗ) и Кировский инструментальный завод (КРИН) .


Качество современных микрометров очень высокое. Точный шлифованный винт, беззазорное соединение винта и гайки, твердосплавные торцевые измерительные поверхности обеспечивают плавное перемещение винта без биения торцевой поверхности. Применение нержавеющих сталей и термообработки обеспечивает антикоррозийные свойства инструмента, сопротивление износу и коррозии.
Положительной особенностью микрометров является соблюдение принципа Аббе , что существенно повышает точность измерения.

Современные микрометры, микрометрические инструменты и приборы подразделяются на две группы:
- механические микрометры со штриховой отсчетной шкалой;
- электронные микрометры с цифровым отсчетом.

Согласно ИСО 3611-2010 микрометры со штриховым отсчетом называют микрометрами с аналоговой индикацией, а микрометры с цифровым отсчетом называют микрометрами с цифровой индикацией.

Механический микрометр со штриховым отсчетом

Основным элементом микрометра является микрометрическая винтовая пара. С ее помощью поступательное перемещение измерительной поверхности (торца) микрометрического винта связано с поворотом отсчетного барабана. Один оборот барабана микровинта соответствует перемещению торца микровинта на один шаг резьбы винта. В большинстве конструкций шаг резьбы винта составляет 0,5 мм , а на барабан наносят 50 или 100 делений. Таким образом, цена деления отсчета составляет 0,01 или 0,05 мм . Резьба винта шлифуется на высокоточных станках. Микрометрическая пара в приборах оформлена в виде отдельного узла – микрометрической головки.

Микрометрическая головка входит в состав микрометров различного назначения, нутромеров, глубиномеров, различных стационарных приборов в качестве измерительного узла или узла, задающего точные перемещения, и т. п.

В головке микрометрический винт перемещается совместно с барабаном относительно стебля, жестко соединенного с микрометрической гайкой. Микрометрические головки обычно имеют две шкалы (рис.1): круговую для определения дробных долей оборота и линейную для определения числа полных оборотов микрометрического винта. Линейная шкала и продольный штрих нанесены на наружной поверхности стебля (или на гильзе, одеваемой на стебель) .
Цена деления линейной шкалы равна шагу винта, при шаге 0,5 мм наносятся две части шкалы с длиной деления 1,0 мм , сдвинутые друг относительно друга на 0,5 мм . Общая длина линейной шкалы определяется диапазоном измерительного перемещения микрометрического винта (обычно 25 мм) .
Круговая шкала нанесена на скосе барабана, торец которого является указателем линейной шкалы. Указателем круговой шкалы служит продольный штрих линейной шкалы.

Диаметр барабана выбран таким, чтобы длина деления была около 1 мм . Для отсчитывания дробных долей деления круговой шкалы в некоторых случаях применяют нониус, аналогичный нониусу штангенциркуля со считыванием без параллакса. Цена деления нониуса составляет 0,001 мм . Однако применение нониуса имеет смысл только в том случае, когда отсчитываемые доли деления меньше погрешности микрометрической передачи.

Для стабилизации измерительного усилия предусмотрено специальное устройство (трещотка, или фрикцион) , закрепленное на барабане. С помощью этого устройства на измерительной поверхности микрометрического винта создается усилие, лежащее для большинства случаев применения микрометрических головок в пределах 5-10 Н .

Микрометры являются универсальными инструментами для наружных измерений. Конструкция и метрологические характеристики микрометров определены .

Микрометр имеют скобу, в которую с одной стороны установлена микрометрическая головка, а с другой пятка, Конструкция микрометров предусматривает стопорное устройство для закрепления микрометрического винта. Измерительными поверхностями у микрометров являются параллельные плоскости торцов микрометрического винта и пятки, обычно имеющие диаметр 8 мм .

Для повышения точности измерений выпускают микрометры с диапазоном измерения до 100 мм с диаметром рабочих поверхностей (стебля и пятки) уменьшают до 6,5 мм . Для повышения износостойкости измерительные поверхности микрометров изготовляют из твердого сплава.
Скобы современных высокоточных микрометров выполняют с теплоизолирующим покрытием, чтобы уменьшить погрешности, вызываемые тепловым расширением при контакте с руками.

Для установки нулевого положения микрометры с нижним пределом измерений от 25 мм комплектуют установочными мерами. Цена деление большинства механических микрометров составляет 0,01 мм .
Выпускают также микрометры с ценой деления 0,05 мм и с нониусом с ценой деления 0,001 мм . Диапазон измерений микрометров до 1500 мм .

Микрометры для измерения диаметров более 500 мм (скобы) делают сварными из труб для облегчения и снабжают теплоизолирующими накладками. Микрометры снабжаются сменными наконечниками с приращением длины 25 мм .
Следует отметить, что измерение микрометрическим инструментами больших диаметров (более 500 мм) очень неудобная операция, требующая опыта и терпения.
Результат такого измерения не надежен.



Электронный микрометр с цифровым отсчетом

Несмотря на повсеместное распространение микрометров с штриховыми шкалами и нониусом, отсчет по двум штриховым шкалам и сложение их результатов неудобен, особенно при плохом зрении и недостаточном освещении. Поэтому появление электронных микрометров с цифровым отсчетом сделало процесс измерения значительно проще и удобнее, а в некоторых случаях и точнее.

Конструктивно электронный микрометр мало отличается от механического микрометра, но вместо штриховых шкал он снабжен инкрементным, как правило, емкостным преобразователем, небольшим электронным устройством и цифровым дисплеем.
Преобразователь аналогичен инкрементному преобразователю, применяемому в штангенциркуле. Он состоит из двух небольших дисковых пластин, на которых размещены изолированные друг от друга электроды. Один диск вращается вместе с винтом, второй неподвижен и удерживается шпонкой, расположенной вдоль винта. Оба диска перемещаются вместе с микровинтом на всю величину хода винта.

На скобе микрометра также расположен электронный микропроцессорный блок и цифровой дисплей с дискретностью показаний 0,01 или 0,001 мм . Высота цифр составляет 7-9 мм . На корпусе имеются две кнопки «вкл/выкл» и установка нуля. Установка нуля возможна как при сведенных пятках микрометра, так и любом месте диапазона измерения (например, для контроля партии одинаковых деталей) .

Некоторые модели имеют дополнительные функции, например, сортировка по размерам, кодовый выход на внешние устройства и т.д. Вся электронная система питается от небольшой литиевой батарейки, срок службы которой 1,5 года или 2000 часов.

Электронные микрометры выпускаются с диапазоном измерения до 300 мм и степенью защиты от IP40 – до IP65 по стандарту DIN EN 60529 и ГОСТ 14254-96 .

Кроме стандартных микрометров выпускают много специализированных моделей, например, для измерения толщины стенок труб со сферическими измерительными поверхностями, для измерения мягких материалов с измерительными поверхностями в форме дисков, для измерения среднего диаметра резьбы, для измерения длины общей нормали зубчатых колес с измерительными поверхностями в форме дисков, для измерения наружного диаметра многолезвийного инструмента и др.

Прогрешность при измерении микрометром

Суммарная погрешность измерения с помощью микрометра состоит из следующих составляющих:

  • погрешностей микрометрической головки;
  • отклонения от плоскостности и от параллельности плоских измерительных поверхностей винта и пятки (при различных углах поворота микрометрического винта и при его стопорении) . При эксплуатации микрометров отклонения от параллельности измерительных поверхностей винта и пятки приводят к различной погрешности для разных форм измеряемых деталей (плоских, цилиндрических, сферических) . Также различными будут деформации этих деталей под действием измерительного усилия;
  • деформации скобы микрометра под действием измерительного усилия;
  • погрешности установочных мер;
  • существенной составляющей погрешности измерения микрометрами (особенно микрометрами больших размеров) является температурная погрешность, вызываемая как разностью температур измеряемой детали и микрометра, так и нагревом микрометра, а иногда и контролируемой детали, теплом рук контролера (для уменьшения последней погрешности в микрометрах для измерения размеров свыше 50 мм предусмотрены теплозащитные накладки) ;
  • погрешность, возникающая у электронных микрометров из-за ошибок емкостного преобразователя.

Пределы допускаемой погрешности микрометров приведены в Таблице 1 . Указанные значения погрешностей установлены в зависимости от диапазона измерений.

Предел допускаемой погрешности микрометрической головки (при выпуске ее в качестве отдельного изделия) оговорен ГОСТ 6507-78 «Микрометры с ценой деления 0,01 мм . Технические условия» в виде предельной погрешности δ = ±4 мкм .
Правильно было бы нормировать погрешность расстояний между двумя любыми точками - амплитудную погрешность, как это предусмотрено рекомендациями ИСО 3611-1978 , так как механизм головки при установке барабана на нуль может занимать различные положения и при этом значение погрешности в каждой отдельной точке будет зависеть от положения нулевой точки.

Предельно допустимая погрешность G микрометра в любой точке диапазона измерений (25 мм) указана в Таблице 1 .

Таблица 1

Проверка и калибровка микрометров

Калибровку и поверку микрометров осуществляют с помощью концевых мер длины в нескольких точках в диапазоне измерений согласно ISO 3611:2010, DIN 863 и ГОСТ 6207-90 .
Концевые меры подбирают таким образом, чтобы была возможность предельную погрешность измерения G микрометра во всех точках диапазона измерения.
Например, рекомендуемые размеры концевых мер длины для проверки микрометров – 3,1; 6,5; 9,7; 12,5; 15,8; 19,0; 21,9 и 25 мм .

Для проверки отклонений плоскостности и непараллельности измерительных поверхностей микрометра (торца винта и пятки) необходимо три или четыре плоскопараллельных оптических стеклянных пластины с градацией по высоте в 1/4 или 1/3 шага микровинта (0,5 мм) . Это обеспечивает проверку с трех или четырех положениях при полном повороте микровинта.
Для проверки пластину устанавливают между пяткой и торцом винта. Аккуратно перемещая пластину между измеряемыми поверхностями, определяют наименьшее количество интерференционных колец или полос на одной измерительной поверхности. К этому числу прибавляют количество колец или полос на другой измерительной поверхности.
При длине волны света примерно 640 нм ширина одной интерференционной полосы составляет 320 нм (0,32 мкм) .



Измерительные линейки, штангенинструмент и микрометрические инструменты

Измерительные линейки

Измерительные линейки (рис. 1.7) относятся к штриховым мерам и предназначены для измерения размеров изделий 14... 18 квалитетов точности прямым методом.


Они предназначены для измерений высот, длин, диаметров, глубин в различных отраслях промышленности, в том числе и в машиностроении. Их основное преимущество - простота конструкции, низкая стоимость, надежность и простота в измерении. Измерение производят прикладыванием линейки к измеряемому объекту, чаще всего совмещая нулевой штрих линейки с краем детали. Отсчет по шкале на другом краю детали дает искомый результат измерения. Но это не обязательно. Так, например, при измерении диаметра отверстия снимаются два показания: с одной стороны отверстия и с другой. Вычитая из большего значения меньшее, получаем размер диаметра.


Конструкции линеек однотипны. Они представляют собой металлическую полосу шириной 20...40 мм и толщиной 0,5... 1,0 мм, на широкой поверхности которой нанесены деления. Линейки изготавливают с одной или двумя шкалами, с верхними пределами измерений 150, 300, 500 и 1 000 мм и ценой деления 0,5 или 1 мм. Линейки с ценой деления 1 мм могут иметь на длине 50 мм от начала шкалы полумиллиметровые деления.



Рис. 1.7.

Допускаемые отклонения действительной общей длины шкалы линеек от номинального значения находятся в пределах +(0,10...0,20) мм в зависимости от общей длины шкалы, а отдельных подразделений- не более ±(0,05...0,10) мм.


Поверку (калибровку) линеек, т. е. определение погрешности нанесения штрихов, производят по образцовым измерительным линейкам, которые называются штриховыми мерами. Погрешность такого сравнения не превышает 0,01 мм.

Штангенинструмент

Предназначен для абсолютных измерений линейных размеров наружных и внутренних поверхностей, а также для воспроизведения размеров при разметке деталей.


К нему относятся штангенциркули (рис. 1.8), штангенглубино- меры и штангенрейсмасы.


Основными частями штангенциркуля являются штанга-линейка с делениями шкалы 1 мм и перемещающаяся по линейке шкала-нониус 5. По штанге-линейке отсчитывают целое число миллиметров, а по нониусу- десятые и сотые доли миллиметра.


По основной линейке 1 с неподвижными губками 2 перемещается рамка 3 с подвижными измерительными губками. Для плавного перемещения рамки по штанге-линейке предусмотрено микрометрическое устройство 7, состоящее из хомутика, зажима и гайки микрометрической подачи. На подвижной рамке установлен стопорный винт 4. Для измерения глубины отверстий пазов и других внутренних элементов деталей используется линейка глубиномера 6.


Для отсчета с помощью нониуса сначала определяют по основной шкале целое число миллиметров перед нулевым делением нониуса. Затем добавляют к нему число долей по нониусу в соответствии с тем, какой штрих шкалы нониуса ближе к штриху основной шкалы (рис. 1.8, г).


Основные типы нониусов (I-IV) представлены на рис. 1.9.


Основными характеристиками нониуса являются величина отсчета по нониусу (цена деления нониуса) а и модуль нониуса у, которые определяются по следующим формулам:



у =(l + i)/(ni),


где i - цена деления основной шкалы, мм; n - число делений нониуса; l - длина шкалы нониуса мм.



Рис. 1.8. :


а - типа ШЦ-1; б - типа ШЦ-П; в - типа ШЦ-Ш; г - отсчет по нониусу; 7 - штанга-линейка; 2 - измерительные губки; 3 - рамка; 4 - винт зажима рамки; 5 - нониус; 6 - линейка глубиномера; 7 - рамка микрометрической подачи

Наибольшее распространение получили нониусы с точностью отсчета 0,1; 0,05; 0,02 мм. Основные метрологические характеристики штангенинструментов, применяемых в машиностроении, представлены в табл. 1.2.


ГОСТ 166-89 предусматривает изготовление и использование трех типов штангенциркулей: ШЦ-1 с ценой деления 0,1 мм, ШЦ-П с ценой деления 0,05 мм и 0,1 мм, ШЦ-Ш с ценой деления 0,05 и 0,1 мм. Кроме того, на заводах применяют ранее изготовленные штангенциркули с ценой деления нониуса 0,02 мм, а также индикаторные штангенциркули с ценой деления индикатора 0,1; 0,05; 0,02 мм.


В штангу индикаторного штангенциркуля (рис. 1.10) вмонтирована зубчатая рейка 2, по которой перемещается зубчатое колесо 3 индикатора, закрепленного на рамке 1. Перемещение зубчатого колеса передается на стрелку индикатора, показывающую единицы, десятые и сотые доли миллиметра.


Для линейных измерений в последнее время применяют также штангенинструменты с электронным цифровым отсчетом (рис. 1.11). В этих приборах вдоль штанги также располагается многозначная мера, по которой отсчитывается величина перемещения подвижной рамки. В качестве многозначной меры используются фотоэлектрические или емкостные преобразователи. Большинство штангенинструментов с электронным отсчетным устройством имеют возможность представления результата измерения непосредственно на шкалу прибора либо на подключаемый к нему микропроцессор. Цена деления таких приборов составляет 0,01 мм.


(ГОСТ 162 - 90) (рис. 1.12) принципиально не отличаются от штангенциркулей и применяются для измерения глубины отверстий и пазов. Рабочими поверхностями штангенглубииомеров являются торцовая поверхность штанги-линейки 1 и база для измерений - нижняя поверхность основания 4. Для удобства отсчета результатов измерений, повышения точности и производительности контрольных операций в некоторых типах штангенглубииомеров вместо нониусной шкалы предусматривается установка индикатора часового типа с ценой деления 0,05 и 0,01 мм.


(ГОСТ 164-90) (рис. 1.13) являются основными измерительными инструментами для разметки деталей и определения их высоты. Они могут иметь дополнительный присоединительный узел для установки измерительных головок параллельно или перпендикулярно плоскости основания.





Рис. 1.9.

Таблица 1.2. Основные метрологические характеристики штангенинструментов

Измерительное средство

Цена деления шкалы, мм

Диапазон показаний шкалы, мм

Пределы измерений инструмента, мм

Предельные погрешности инструмента, мкм

Условное

обозначение

инструмента

Штангенциркули

ШЦ-1-125-0,1

(ГОСТ 166-89) типов:

ГОСТ 166-89

ШЦ-I, ШЦТ-1

±(150...170)

ШЦ-И, ШЦ-Ш

ШЦ-Н-250-0,05

ГОСТ 166-89

ШГ-160

(ГОСТ 162-89) типа ШГ

ГОСТ 162 - 90





Рис. 1.10. : 1 - рамка; 2 - зубчатая рейка; 3 - зубчатое колесо

Конструкция и принцип действия штангенрейсмаса принципиально не отличаются от конструкции и принципа действия штангенциркуля. На заводах применяют штангенрейсмасы с индикаторным и цифровым отсчетом показаний. В первом случае вместо нониус - ной шкалы на подвижной рамке устанавливают индикатор часового типа с ценой деления 0,05 или 0,01 мм, а во втором - зубчатое колесо ротационного фотоэлектрического счетчика импульсов, которое находится в зацеплении с зубчатой рейкой, нарезанной на штанге прибора. За один оборот зубчатого колеса счетчик дает 1 000 импульсов, которые передаются цифровому показывающему или записывающему устройству. Погрешность измерения в этом случае может не превышать 10... 15 мкм.


Для измерения и контроля толщины зубьев зубчатых колес по постоянной хорде применяют штангензубомеры с нониусом по




Рис. 1.11.



Рис. 1.12. :


1 - штанга-линейка; 2 - рамка микрометрической подачи; 3 - нониус; 4 - основание




Рис. 1.13.


1 - штанга-линейка; 2 - рамка; 3 основание; 4 - державка; 5 - нониус

ТУ 2-034-773 - 84 (рис. 1.14) ШЗ-18 и ШЗ-36 с ценой деления 0,05 мм. Этими приборами измеряют зубчатые колеса с модулем с 1 по 18 и с 5 по 36 соответственно без ограничения диаметра делительной окружности, со степенями точности колес 11, 12.


Сама толщина зуба стандартом не нормируется, однако по этой величине путем пересчета можно определить величину смещения исходного контура зубчатой рейки, которая нормируется ГОСТ. При смещении исходного контура зубчатой рейки изменяется толщина зуба по постоянной хорде.


При угле зацепления 20° расстояние hc от постоянной хорды до окружности выступов hc = 0,7476т, а теоретическая толщина зуба по постоянной хорде Sc = 1,387т. На практике значения hc и Sc находят по заранее составленным таблицам.


Штангензубомер имеет две взаимно перпендикулярные штанги 1 и 4, по которым перемещаются две нониусные рамки 2 и 5.


Рамка 2 выполнена с упором 3, а рамка 5 - с губкой 6. При измерении толщины зуба упор 3 устанавливают по нониусу 2 на расчетное значение hc и затем накладывают прибор на проверяемый зуб. Губки 6 и 7 сдвигают и по нониусу 5 измеряют толщину зуба Sc.

Микрометрические инструменты

Предназначены для абсолютных измерений наружных и внутренних размеров, высот уступов, глубин отверстий и пазов и т.д. К ним относятся гладкие микрометры (рис. 1.15), микрометры со вставками, микрометрические глубиномеры, микрометрические нутромеры.


Принцип действия этих инструментов основан на использовании винтовой пары (винт-гайка) для преобразования вращательного движения микрометрического винта в поступательное. Основными частями микрометрических инструментов являются: корпус 1, стебель 3, внутри которого с одной стороны имеется микрометрическая резьба с шагом 0,5 мм, а с другой - гладкое цилиндрическое отверстие, обеспечивающее точное направление перемещения винта.




Рис. 1.14. :


1 и 4 - штанга; 2 и 5 - нониусная рамка; 3 - упор; 6 и 7 - губки

На винт 4 установлен барабан 5, соединенный с трещоткой 7, обеспечивающей постоянное усилие измерения (для микрометрических нутромеров трещотка не устанавливается). Стопор служит для закрепления винта в нужном положении.


Отсчетное устройство микрометрических инструментов (рис. 1.15, в) состоит из двух шкал: продольной 1 и круговой 2. По продольной шкале отсчитывают целые миллиметры и 0,5 мм, по круговой шкале - десятые и сотые миллиметра.


Основные метрологические характеристики микрометрических инструментов представлены в табл. 1.3.


Гладкие микрометры типа МК (ГОСТ 6507-90) (см. рис. 1.15) выпускают с различными пределами измерений - от 0 до 300 мм с диапазоном показаний шкалы 25 мм, а также 300...400, 400...500 и 500...600 мм.



Рис. 1.15. :


а - кинематическая схема; 6 - принципиальная схема; 7 - корпус; 3 - пятка неподвижная; 3 - стебель; 4 - винт микрометрический; 5 - барабан; 6 - гайка микрометрической пары; 7 - устройство стабилизации усилия измерений (трещотка); 8 - ось продольной шкалы; в - отсчетное устройство: 7 - продольная шкала; 3 - круговая шкала

Предельная погрешность микрометров зависит от верхних пределов измерения и может составлять от ±3 мкм для микрометров МК-25 до ± 50 мкм - для микрометров МК-500. Выпускают микрометры с цифровым отсчетом всего результата измерения. Отсчетное устройство в таких микрометрах действует по механическому принципу.


(ГОСТ 7470 - 92) (рис. 1.16) предназначен для абсолютных измерений глубин отверстий, высот выступов и т.д. Он имеет стебель 3, закрепленный на траверсе 4 с помощью гайки фиксации 6. Одной измерительной поверхностью является нижняя плоскость траверсы 4, другой - плоскость микрометрического винта, соединенного с подвижной пяткой 5. Микровинт вращается трещоткой 1, соединенной с барабаном 2. В комплект микрометрического глубиномера входят установочные меры с плоскими измерительными торцами.


Таблица 2.3. Основные метрологические характеристики микрометрических инструментов

Измерительное средство

Цена деления шкалы,

Диапазон показаний шкалы,

Пределы измерений инструмента, мм

Предельная

Погрешность инструмента,

Измерительное усилие,

Микрометры гладкие типа МК для измерения наружных размеров

(ГОСТ 6507 - 90)

Нутромер микро метрический (тип НМ)

(ГОСТ 10-88)

Глубиномер микрометрический

(ГОСТ 7470-92)

(ГОСТ 10-88) (рис. 1.17) предназначен для абсолютных измерений внутренних размеров. При измерении измерительные наконечники приводят в соприкосновение со стенками проверяемого отверстия. Микрометрические нутромеры не имеют трещоток, поэтому плотность соприкосновения определяется на ощупь. Установка нутромера на нуль выполняется либо по установочному кольцу, либо по блоку концевых мер с боковиками, устанавливаемых в струбцину.


Микрометрические нутромеры типа НМ выпускают с пределами измерений 50...75, 75... 175, 75...600, 150... 1 250, 800...2 500, 1 250...4000, 2500...6000 и 4000... 10000 мм. При необходимости увеличения пределов измерений используют удлинители.


Для выбора удлинителей от проверяемого размера отнимают нижний предел измерений микрометрической головки с наконечником. Затем выбирают удлинители по размерам, обеспечивающим их наименьшее количество (от наибольшего к наименьшему) . Сумма нижнего предела измерений микрометрической головки с наконечником и удлинителями должна быть меньше требуемого размера, но не более чем на разность между пределами измерения микрометрической головки.


Микрометрические инструменты применяют также для специфических видов контроля параметров сложных деталей. Так, микрометр со вставками (резьбовой микрометр) (рис. 1.18, а) применяют для измерения среднего диаметра резьбы, микрометрический нормалемер (рис. 1.19) - для измерения колебания длины общей нормали зубчатых колес.


Резьбовой микрометр имеет в неподвижной пятке 1 и микрометрическом винте 4 отверстия, в которые устанавливают сменные призматические 2 и конические 3 вставки (рис. 1.18, б).




Рис. 1.16. :


1 - трещотка; S - барабан; 3 - стебель; 4- траверса; 5 - подвижная пятка; 6 - гайка фиксации



Рис. 1.17. :


1 - неподвижный наконечник; 2 - удлинитель (головка индикаторная); 3 - микрометрическая головка

Для измерения метрических и трапецеидальных резьб предназначено по восемь пар вставок, а для измерения дюймовых резьб - шесть пар вставок. Для компенсации изменения длины вставок барабан изготавливают раздвижным: он состоит из двух частей 5 и 7, стягиваемых гайкой 6. При измерении резьбы поверхности вставок приводятся в соприкосновение с профилем резьбы (рис. 1.18, в). Погрешность измерения резьб (до Мб) составляет 0,04...0,05 мм. Для крупных шагов наибольшие погрешности достигают 0,15 мм, а при измерении с установкой по резьбовому калибру - 0,10 мм.




Рис. 1.18. :


а - схема; б - сменные вставки; в - принцип измерений; 7 - неподвижная пятка; 2 - призматическая вставка; 3 - коническая вставка; 4 - микрометрический винт; 5 и 7 - раздвижные части барабана; 6 - гайка





Рис. 1.19. Микрометрический нормалемер


Микрометрический нормалемер в неподвижной пятке и микрометрическом винте имеет две охватывающие параллельные тарельчатые губки, которые при измерении входят во впадины зубчатого колеса.

Для точного измерения наружных и внутренних диаметров, толщин и глубин применяются микрометрические инструменты. К ним относятся: микрометры различных конструкций и назначения, микрометрические нутромеры и микрометрические глубиномеры. Все типы микрометрических инструментов работают по принципу использования взаимного перемещения винта и гайки. Наибольшее распространение имеют микрометры. Они выпускаются следующих типов: микрометры гладкие обыкновенные, микрометры с плоскими вставками, микрометры рычажные, микрометры резьбовые. Все микрометрические инструменты имеют точность отсчета 0,01 мм.

Микрометры гладкие предназначены для измерения наружных размеров и длин гладких деталей. Согласно стандарту микрометры выпускаются со следующими пределами измерений: 0-25, 25-50, 50-75, 75-100 и далее через 25 мм до 275-300 мм, а затем 300-400, 400-500 и 500-600 мм.

У всех микрометров максимальное перемещение микрометрического винта составляет 25 мм, что способствует сохранению необходимой точности. При более длинных винтах точность была бы ниже вследствие накопления ошибок при изготовлении винта. У трех последних типов микрометров с разницей в пределах измерения в 100 мм ход винта также равен 25 мм, а увеличение пределов измерений достигается за счет применения сменных пяток.

Микрометр состоит из скобы, в которую запрессованы с одной стороны неподвижная пятка, с другой - стебель. Стебель имеет внутри нарезку, в которую ввинчивается микрометрический винт. Винт неподвижно скреплен с барабаном, к торцу которого привернут корпус трещотки. При вращении трещотки вращается барабан и микрометрический винт. Трещотка служит для обеспечения постоянной величины зажатия измеряемых деталей и, следовательно, точности измерения. Закрепление винта в определенном положении производится стопором.

На стебле вдоль его оси нанесена черта, по обе стороны которой расположена шкала, где с одной стороны указаны целые миллиметры, с другой стороны - полумиллиметры. На конической части барабана нанесена круговая шкала, имеющая 50 делений. Шаг микрометрического винта равен 0,5 мм, т. е. за один оборот винт перемещается на 0,5 мм, а при повороте на одно деление барабана продольное перемещен ние составит 0,5: 50 = 0,01 мм. Отсчет размеров производится по шкале на стебле (целые миллиметры и полумиллиметры) и пошкале на барабане (сотые доли миллиметра). Считаются те деления на стебле, которые находятся слева от скошенного края барабана, и то деление на барабане, которое совпадает с продольной чертой на стебле.

Перед проведением замеров проверяют нулевые положения микрометра. Для этого при помощи трещотки перемещают микрометрический винт до соприкосновения его с неподвижной пяткой при пределах измерения 0-25 мм или с установочной мерой при других пределах измерения. Размер установочной меры должен быть равен нижнему пределу измерения микрометра. При этом у исправного микрометра должны совпадать нулевой штрих барабана с продольной чертой стебля, а кромка барабана - с нулевым штрихом шкалы стебля.

Микрометрический нутромер (штихмасс) применяется для измерений внутренних размеров отверстий, пазов, скоб. Он выпускается с пределами измерений 50-75, 75-175, 75-600, 150- 1250, 860-2500, 1520-4000 мм. Увеличение предела измерений производится за счет применения удлинителей. Микрометрический нутромер состоит из микрометрической головки с измерительными наконечниками и комплекта удлинителей. Нутромер отличается от микрометра отсутствием скобы и трещотки, а также некоторыми конструктивными особенностями. Микрометрический глубиномер используется для точного измерения глубины отверстий, пазов, канавок, выточек. Он выпускается с пределами измерений 0-25, 0-50, 0-100 мм. Точность отсчета 0,01 мм. Максимальный ход микрометрического винта 25 мм. Расширение пределов измерений достигается применением сменных стержней.

– это универсальный измерительный прибор для высокоточного (с погрешностью от 2 до 50 мкм) определения линейного размера детали. Измерение может быть произведено абсолютным или относительным контактным методом с погрешностью достаточной для точной сборки узлов и станочного производства.

Устройство и применение микрометров

Как универсальный измерительный инструмент применение микрометра возможно в любой области, где необходимо определение линейных размеров с точностью от 2 мкм. Это, в первую очередь, механическая обработка деталей, точная сборка узлов и механизмов, настройка работы промышленного оборудования и мн. другое.

Устройство микрометра достаточно простое, в конструкцию инструмента входит всего три основных элемента:

  • Рама в виде полукруга оснащенная опорной стойкой (1) для фиксации измеряемой детали.
  • Ручка, оснащенная трещоткой (6), неподвижным стеблем (4) со шкалой и измерительным барабаном (5).
  • Винт (2) с неподвижной гайкой (3) для измерения линейных величин.

Замер с помощью микрометра выполняется посредством перемещения винта в неподвижной гайке. По углу оборота винта и определяется перемещение и рассчитывается линейный размер. Количество полных оборотов указано на стебле, доли – по круговой шкале на барабане. Инструмент также оснащен устройством кольцевой гайкой для фиксации.

Для обеспечения точности измерений передвижение микрометрического винта не должно превышать 25 мм. Поэтому микрометры выпускаются в пределах 0–25, 25–50 мм и т. д., до 300 мм, с дальнейшим шагом 100 мм. - 300–400, 400–500 и т. д.

Принцип действия микрометров

Для примера возьмём обычные механические гладкие микрометры, получившие наиболее широкое применение. Данный инструмент позволяет производить замер абсолютным и относительным способом. При абсолютном замере измеряемая деталь размещается между опорной стойкой и передвижным винтом. Полученный размер можно определить непосредственно по шкале. При относительном измерении определяется размер рядом распложенных предметов и затем вычисляется нужный параметр.

Сам замер производится в следующей последовательности:

  • Проверить точность прибора. Необходимо закрутить винт и проверить – совпадает ли нулевая отметка на шкале барабана с горизонтальным штрихом на стебле.
  • Если предел измерений более 25 мм, то для проверки необходимо использовать эталонные меры.
  • При несовпадении меток необходимо отрегулировать стебель специальным ключом (входит в комплект).
  • Перед началом измерения винт выкручивается до размера немного более размера детали.
  • Измеряемая деталь размещается между винтом и неподвижным упором.
  • Винт необходимо зажать с помощью трещотки до характерного звука срабатывания – трещотка начинает проворачиваться, закрутка микровинта останавливается после 3 щелчков.
  • Определяем показание по трем шкалам. Первые две расположены на стебле и одна на барабане. По штрихам в верхней части шкалы определяется количество полных миллиметров. К ним прибавляем, если возможно, половину второй шкалы, т. е. ещё 0,5 мм.
  • В завершение прибавляем значение со шкалы барабана в соответствие с ценой деления шкалы, например 0,01 мм.
  • Окончательный итог определяется суммированием всех трех показаний.
  • Для получения максимально точного результата рекомендуется проведение нескольких замеров с расчетом среднего значения.

Типы микрометров

Для различных объектов измерения выпускаются следующие типы микрометров:

  • Микрометры листовые – для замера толщины листов.
  • Гладкие микрометры – для определения размера предметов с гладкой поверхностью.
  • Микрометры рычажные – оснащены рычажно-зубчатой головкой для замера изделий со сложной конфигурацией.
  • Трубные микрометры – для определения размеров стен труб.
  • Проволочные и резьбомерные – для замера тонких изделий.
  • Цифровые микрометры – оснащены электронной системой определения размера и цифровой шкалой.

Микрометры цифровые

Вместе с механическими, цифровые микрометры пользуются большой популярностью благодаря удобству и точности измерения, а также возможностям электронных приборов:

  • Производить замер с точностью до 1 мкм при погрешности до 0,1 мкм.
  • Встроенная калибровка.
  • Удобное цифровое табло для максимально быстрого и точного получения результата.
  • Выбор систем расчета.
  • Вывод информации на ПК и мн. другое в зависимости от модели.

Государственные стандарты

Основной стандарт регулирующий технические условия производства инструмента – ГОСТ 6507-90

Микрометры – высокоточные средства измерений, относящиеся к группе микрометрических инструментов, предназначенные для прямого измерения геометрических размеров абсолютным контактным методом. У всех микрометров измерительным элементом служит микрометрический винт с точным шагом, обычно шаг резьбы 0.5 мм. В основе конструкции микрометров лежит микрометрическая пара в виде резьбовой (микрометрической) гайки и микрометрического винта, соединенного с отсчетным барабаном. Винтовая пара предназначена для преобразования продольного перемещения винта в окружные перемещения барабана.


Микрометры оснащаются механизмом трещотки или иным механизмом, обеспечивающим постоянство измерительного усилия инструмента. Принцип действия таких устройств заключается в том, что когда достигнуто максимальное измерительное усилие, крутящий момент перестает подаваться на винт и трещотка начинает проскальзывать, вращаясь вхолостую.


В данной статье представлены описания различных типов и видов микрометров: цифровые, гладкие, листовые, трубные, рычажные, микрометры для измерений внутренних размеров, специальные микрометры, микрометры для мягких материалов, зубомерные и резьбовые микрометры, и т.п.

Если Вы хотите купить микрометр, то Вы сможете подробнее ознакомиться с назначением и основными техническими параметрами инструментов.

Наибольшее распространение получили микрометры гладкие, применяемые практически во всех сферах хозяйственной деятельности. Мы рассмотрим микрометры производства РФ и КНР всех типоразмеров.

Микрометры гладкие тип МК с ценой деления 0,01 мм (РФ)

Микрометры гладкие МК выпускаются в соответствии с ГОСТ 6507-90 и относятся к микрометрическому инструменту и используются для измерения наружных (охватываемых) размеров изделий и деталей прямым абсолютным методом.


Измеряемые размеры определяют по углу поворота барабана микрометрической головки. Продольная основная шкала, расположенная на неподвижной втулке, называемой стеблем, служит для отсчета полных оборотов микрометрического винта. На стебле выполнена разрезная гайка для центрирования и направления микрометрического винта. Для облегчения отсчета шкала состоит из двух шкал с шагом 1 мм, смещенных относительно друг друга на 0.5 мм и нанесенных по обе стороны продольного штриха на стебле. Таким образом, интервал деления основной шкалы равен шагу микрометрического винта.


Указателем для отсчета по основной шкале служит торец барабана, закрепленного на микрометрическом винте. Круговая шкала с радиально нанесенными штрихами служит для отсчета долей миллиметра. Шкала имеет 50 делений, нанесенных на конусной части барабана микрометра. Указателем для этой шкалы является продольный штрих на стебле.


Измерительные поверхности гладких микрометров оснащаются твердым сплавом.


Гладкие части микрометрического винта имеют диаметр 8h9 или 6h9.


Для настройки микрометры оснащаются установочными мерами. К микрометрам с диапазоном измерения от 25 мм до 300 мм прилагается одна установочная мера, соответствующая размером нижней границе диапазона микрометра, и две установочных меры если диапазон превышает 300 мм. Микрометры с диапазоном измерений от 0 до 25 установочной меры не имеют.


По точности микрометры подразделяются на 1 и 2 класс точности. В соответствии с классом точности устанавливается предел допускаемой погрешности микрометра


Микрометры гладкие производства ЗАО "КРИН", г. Киров, РФ внесены в Государственный реестр средств измерений РБ и поставляются Заказчику с паспортом поверки.


Диапазоны измерений микрометров гладких МК:


Основные характеристики микрометров гладких МК:

Микрометры электронные цифровые МКЦ

Микрометры гладкие электронные цифровые, для удобства по аналогии с требованиями ГОСТ обозначенные нами МКЦ, производства предприятий КНР.


Заявлено так же производство цифровых микрометров рядом российских предприятий, однако при этом никаких принципиальных или сколько-нибудь значимых различий в конструкции и параметрах микрометров мы не обнаружили.


В основе конструкции гладких электронных микрометров лежит микрометрическая пара винт-гайка. Отличие от механических гладких микрометров состоит в отсутствии шкал на стебле и барабане, результат измерений снимается с ЖК-дисплея. Цифровое отсчетное устройство определяет не только точность прибора, но и наличие множества функций, которых нет у механических аналогов. Электронные цифровые микрометры способны производить измерения в миллиметрах и дюймах, а так же обладают функцией установки нуля. Эта функция позволяет электронным микрометрам осуществлять измерения не только в абсолютной, но и в относительной системах отсчета. Такая возможность является значительным преимуществом электронных цифровых микрометров в сравнении с механическими.


Для удобства пользователя некоторые модели электронных микрометров оснащаются дополнительными функциями. Например, функция удержания полученного результата, обычно обозначаемая "HOLD", и функция переключения системы отсчета.

Дополнительные функции цифрового микрометра, как правило, отображаются в виде специальных символов, обозначающих эти функции. Например, символ "H" означает включение функции удержания результата измерения на дисплее микрометра.


На ЖК-дисплее электронных микрометров отображается значение полученного результата измерения, и единицы измерения, в которых получен результат. При этом, так же отображается и символ системы отсчета - абсолютная или относительная.

Часто некоторые модели цифровых микрометров оснащены функцией контроля заряда батареи. Когда возникает необходимость замены элемента питания либо подзарядки аккумулятора, на ЖК-дисплее появляется символ, изображающий элемент питания.


Наличие дополнительных функций, а так же легкость считывания результатов, что является наиболее важным отличием и преимуществом электронных микрометров, существенно уменьшает затраты времени и упрощает процесс измерения в сравнении с механическими микрометрами. К недостаткам, пожалуй, можно отнести только более высокую стоимость.


Все электронные микрометры проходят метрологический контроль в аккредитованных лабораториях. При получении приобретенного инструмента Заказчику выдается свидетельство о поверке либо калибровке.

Основные технические характеристики электронных микрометров:


Микрометры гладкие тип МК с ценой деления 0,01мм (КНР)

Микрометры гладкие производства предприятий КНР имеют аналогичную конструкцию и назначение с российскими микрометрами, и изготавливаются в соответствии со стандартом КНР GB/T 1216-2004. Для удобства пользователя в наименовании марки или типоразмера гладких микрометров мы применяем по аналогии с приборами производства РФ обозначение МК.


Конструктивно микрометры почти не отличаются. Разрезная гайка так же выполнена заодно со стеблем микрометра, в некоторых моделях запрессована в стебель, и имеет аналогичное назначение - регулировка натяга в паре «винт-гайка». Микрометрический винт имеет шаг 0.5 мм, гладкая часть винта имеет диаметр 6.5 мм, 7.5 мм или 8 мм.


Измерительные поверхности микрометров изготовлены из твердого сплава или закаленной стали с твердостью 61.8 HRC.


Стандартом GB/T 1216-2004 предусмотрены следующие диапазоны измерений микрометров:



Как видно из таблицы в отличие от российских аналогов микрометры КНР в пределах от 300 до 500 мм изменяют диапазон измерений с шагом 25 мм и комплектуются одной установочной мерой. Следует отметить, что стандарт GB/T 1216-2004 предусматривает менее жесткие требования к установочным мерам по сравнению с ГОСТ.


Микрометры имеют две шкалы – основная на стебле, двойная, со смещением относительно друг друга на 0.5 мм. Отсчет долей миллиметра производится по круговой шкале барабана микрометра.


Для установки микрометра на «ноль» в большинстве моделей используется специальный ключ, входящий в комплект микрометра.


Погрешность микрометрической головки не должна превышать 3 мкм.

Основные технические характеристики микрометров:


Микрометры производства КНР поставляются Заказчику после проверки на соответствие требованиям стандарта GB/T 1216-2004 или завода изготовителя. при получении инструмента Заказчику выдается свидетельство о калибровке.

Микрометры рычажные типа МР

Микрометры рычажные типа МР предназначены для высокоточного измерения линейных размеров прецизионных деталей как методом непосредственной оценки, так и методом сравнения с эталонной мерой длины, в точном приборостроении, машиностроении и других отраслях промышленности.


Рабочее положение микрометров - линия измерения расположена горизонтально.


Шкала отсчетного устройства может быть расположена от вертикального до горизонтального положения.


Микрометры рычажные выпускаются с ценой деления 0,001 и 0,002 мм .

Технические характеристики рычажных микрометров:


Микрометр специальный МКВ для внутренних размеро в

Микрометр специальный МКВ предназначен для измерения для внутренних размеров отверстий, пазов и прочих охватывающих элементов изделий.


Принцип действия микрометра МКВ аналогичен обычному механическому микрометру, с той лишь разницей, что с помощью специального микрометра измеряют внутренние размеры.


Для установки микрометра на "ноль" используются специальные установочные втулки.


Микрометр специальный МКВ для внутренних размеров обладает всеми достоинствами механического микрометра - простотой, надежностью и долговечностью.

Микрометры листовые тип МЛ


Микрометры листовые тип МЛ предназначены для измерения толщины листов и лент


Специальная вытянутая форма скобы микрометра удобна для измерений толщин на некотором удалении от кромки листа, обычно имеющей неровности и деформации, что позволяет получить более точные результаты измерения, в сравнении с обычными гладкими микрометрами


Кроме того, листовые микрометры снабжены круговой шкалой для более удобного снятия результатов измерения


Измерительные поверхности микрометра выполнены из твердого сплава.

Технические характеристики микрометров листовых МЛ:

Микрометры зубомерные тип МЗ

Микрометры зубомерные тип МЗ предназначены для измерения длины общей нормали зубчатых колес с модулем более 1 мм.


Микрометры с верхним пределом диапазона измерения 50 мм и выше укомплектованы установочной мерой - концевой плоскопараллельной мерой длины.


Номинальный диаметр измерительных поверхностей пятки и измерительной губки микрометра не менее 24 мм.


Микрометры типа МЗ производятся ЗАО "КРИН", г. Киров, РФ.

Допускается изготовление пятки со срезанной измерительной поверхностью.

Технические характеристики микрометров МЗ:

Микрометры трубные МТ с ценой деления 0.01мм

Микрометры трубные тип МТ предназначены для измерения толщины стенок труб.