Конструкции выводов электронных сборок. Монтаж электронных модулей. Варианты реализации. площадь сечения проволоки

Утверждено редакционно-издательским советом университета

УДК.621.396.6.001.63

Винников, В.В. Основы проектирования электронных средств: учебное пособие: в 2 кн. Кн. 2 / В. В. Винников. – СПб.: Изд-во СЗТУ, 2009. - 223 с.

Учебное пособие разработано в соответствии с требованиями государ-ственных образовательных стандартов высшего профессионального образова-ния.

Во второй книге пособия рассматриваются вопросы, связанные с конст-рукторским проектированием; защитой конструкций ЭС; конструированием ЭС с учетом требований эргономики и дизайна.

Учебное пособие предназначено для студентов специальности 210201.65 - «Проектирование и технология радиоэлектронных средств» и направления подготовки бакалавра 210200.62 - «Проектирование и технология электронных средств», изучающих дисциплину «Основы проектирования электронных средств».

Р е ц е н з е н т ы: В.И.Соколов – д-р физ.-мат. наук, проф., науч. консультант лаб. Физико-технического института РАН; А. Е. Калмыков, канд. физ.-мат. наук, ст. науч. сотр. Физико-технического института РАН.

Ó Северо-Западный государственный заочный технический университет, 2009

Ó Винников В.В., 2009

ПРЕДИСЛОВИЕ

Данное учебное пособие предназначено для студентов специальности 210201.65 - «Проектирование и технология радиоэлектронных средств» и направления подготовки бакалавра 210200.62 – «Проектирование и технология электронных средств». Оно должно помочь им в изучении дисциплины «Основы проектирования электронных средств» цикла общепрофес-сиональных дисциплин (федеральный компонент). Кроме этого, пособие могут использовать студенты специальности 210302.65 – «Радиотехника» и 230101.65 – «Вычислительные машины, комплексы, системы и сети» при изучении дисциплин «Основы конструирования и технология производства РЭС» и «Конструкторско-технологическое обеспечение производства ЭВМ» соответст-венно.

Целью пособия является обеспечение студентов материалом по следующим разделам рабочей программы дисциплины: конструкторское проектирование (конструирование элементов несущих конструкций ЭС; информационные технологии проектирования ЭС); защита конструкций ЭС; конструирование ЭС с учетом требований эргономики и дизайна. Дисциплина «Основы проектирования электронных средств» является логическим продолжением дисциплины «Основы конструирования и надежности ЭС» и связана с дисциплинами «Основы проектирования РЭС» и «Современные методы конструирования и технологии РЭС».

ВВЕДЕНИЕ

Дисциплина «Основы проектирования электронных средств» является логическим продолжением дисциплины «Основы конструирования и надежности ЭС», и, следовательно, весь изученный материал этой дисциплины должен быть использован для ее изучения и углубления знаний по проектированию ЭС (РЭС). С другой стороны, изучаемая дисциплина является основой для более глубокого изучения ряда методик проектирования, и прежде всего поверочных методик расчета конструкций РЭС на допустимость теплового, электромагнитного, механического и других режимов их функционирования, которые будут изучаться на пятом и шестом курсах в дисциплине «Основы проектирования РЭС». В связи с этим рассмотрение указанных методик в изучаемой дисциплине не проводится, и основное внимание уделено конструкторскому проектированию функциональных узлов и модулей, выполняемых печатным способом.

Данное пособие (книга 2) является логическим продолжением учебного пособия «Основы проектирования электронных средств», книга 1 . Поэтому при изучении дисциплины с него и следует начинать.

В данном пособии имеется предметный указатель, библиографический список использованной литературы, а также вопросы для самоконтроля.

1. Конструирование модулей эс

1.1. Конструирование герметичных ячеек и блоков

Общие принципы компоновки элементов конструкции в герме­тичных блоках аналогичны негерметичным конструкциям . Су­щественным отличием является обеспечение необходимой герме­тичности, а также специфика в отводе тепла для создания нор­мальных тепловых режимов в блоке. Широкое применение для охлаждения герметичных блоков нашел метод кондуктивных теплостоков, обеспечивающий наиболее рациональный отвод тепла от применяемых бескорпусных интегральных схем (ИС), интегральных микросхем (ИМС) и микросборок (МСБ).

Все бескорпусные ИС и МСБ в герметичных блоках устанав­ливаются на индивидуальные или групповые теплоотводящие ши­ны, последние, в свою очередь, контактируют с корпусом блока, что и позволяет передавать тепло с элементов на корпус. Снятие тепла с корпуса блока происходит естественной конвекцией, для чего увеличивают поверхность блока за счет его оребрения или принудительным обдувом воздуха по корпусу блока. Для увели­чения рассеиваемой мощности блока внутрь блока вводят возду­ховоды, не нарушающие герметичность корпуса блока. Для урав­нивания тепловых полей элементов, находящихся внутри корпуса блока, в блоке устанавливают вентилятор, который осуществляет внутреннее перемешивание газа, запол-няющего блок. Индивиду­альные и групповые тепловые шины обеспечивают сглаживание теплового поля на подложках бескорпусных ИС и МСБ. Учиты­вая вышеизложенное и тот факт, что применение бескорпусных НС и МСБ увеличивает плотность упаковки элементов и соответ­ственно мощность рассеивания в блоке, конкретные конструкции герметичных блоков и их ячеек значительно отличаются от кон­струкций негерметичных блоков, хотя общий принцип компонов­ки и варианта конструкций блоков (разъемный и книжный) со­храняется.

Расчет количества бескорпусных ИС и МСБ на печатной пла­те ячейки осуществляется по методике определения количества корпусных элементов. Установка бескорпусной МСБ представле­на на рис. 1 . Шаги установки бескорпусных МСБ рекоменду­ется выбирать по табл. 1.

Шаги установки бескорпусных МСБ в зависимости от среднего числа задействованных выводов, при котором возможно применение двусторонних печатных плат с односторонней установкой бес­корпусных МСБ и много-слойных печатных плат (МПП) с двусто­ронней установкой бескорпусных микросборок при числе слоев не менее четырех (для ручного метода проектирования), приведены в табл. 2. Рекомендуемые шаги даны для случая, когда выход­ные контакты бескорпусных МСБ располагаются с двух сторон подложки МСБ.

Рис. 1. Установка бескорпусной МСБ на металлическое основание: 1 и 2 – платы; 3 – основание металлическое; 4 – проводник; 5 – контактная площадка

На рис. 2 представлена разметка посадочных мест под бес­корпусные МСБ. По аналогии с ячейками, выполненными с при­менением корпусных элементов, введем понятие размеров крае­вых полей на печатной плате. Под размерами краевых полей х 1, х 2, у 1 и у 2;, понимаются расстояния от края печатной платы по осям Х и Y до первого ряда контактных площадок для внешних выводов бескорпусных МСБ. Краевое поле у 2 для всех типоразмеров пленочных плат (подложек) бескорпусных МСБ составляет 12,5 мм при применении контрольных колодок с запайкой штырей в металлизированные отверстия или с использованием печатных контактных площадок и 10 мм при применении в качестве элементов контроля одиночных пистонов и контактов.

Минимальные технологические размеры краевых полей печат­ных плат при установке бескорпусных МСБ, округленных до зна­чений, кратных 2,5мм, без учета трассировки печатных проводни­ков, приведены в табл. 3 . При механизированной сборке ячеек на печатных платах предусматриваются краевые поля ши­риной не менее 5 мм. На рис. 3...6 представлены типовые конструкции ячеек герметичных блоков разъемного и книжных вариантов конструкций.

Таблица 1

Шаги установки бескорпусных микросборок на печатные платы ячеек

Шаг установ-ки бескор-пусной микросборки по осям, мм

Размеры пленочной платы бескорпусной МСБ, мм

Примечание : 1- знак плюс (+) соответствует рекомендуемым шагам установки;

Таблица 2

Шаги установки бескорпусных МСБ (БСМБ) в зависимости от среднего числа задействованных выводов

пленочной

Среднее число задействованных

выводов в одной БСМБ, мм

не более

Шаг установки БСМБ по осям, мм

Рис. 2. Разметка посадочных мест под бескорпусные МСБ

Таблица 3

Краевые поля х 1, х 2 на ПП при установке БСМБ

Рис. 3. Ячейка герметичного блока разъемной конструкции: 1 - платапечатная;2 - микросборка бескорпусная; 3 - шина металлическая; 4 - контакт электрического соединителя

Рис. 4. Ячейка герметичного блока книжной конструкции: 1 -основание металлическое; 2 - микросборка бескорпусная; 3 - воздуховод: 4 - контакт электрический; 5 - плата печатная

Р
ис. 5. Ячейка герметичного блока книжной конструкции с рамой:1 - плата печатная; 2 - шина металлическая; 3 - микросборка корпусная; 4 - контакт печатный

Рис. 6. Ячейка герметичного блока книжной конструкции:

1 - плата печатная; 2 - шина металлическая; 3 – микросборка

Ячейка, приведенная на рис. 3, состоит из металлических шин, к которым пустотелыми заклепками прикрепляется печатная плата. Бескорпусные МСБ непосредственно установлены на металлические шины с двух сторон печатной платы. К торцу одной из сторон печатной платы через металлические шины крепится прижимная планка, имеющая приливы для крепления ячейки в блоке с помощью невыпадающих винтов. С противоположной стороны установлены контакты с помощью развальцовки и пайки в отверстия печатной платы, пред­назначенные для электрического соединения ячейки с объединительной печатной платой блока.

Для отвода тепла от ячейки прижимная планка имеет хороший тепловой контакт с металлическими шинами ячейки. Ячейка, приведенная на рис. 4, со­стоит из П-образного металлического основания, к которому с помощью сварки присоединен воздуховод прямоугольной формы. Воздуховод имеет приливы для крепления и шарнирного соединения ячеек в блоке. Печатная плата ячейки крепится к основанию пустотелыми заклепками. Бескорпусные МСБ непосред­ственно установлены на основании с двух сторон. Элек-трическое соединение ячей­ки с объединительной печатной платой блока выполнено с помощью гибкого печатного кабеля. Для отвода тепла от ячейки основание обладает хорошим тепловым контактом по всей длине с возду-ховодом.

Ячейка, приведенная на рис. 5, состоит из литой рамы, к которой пусто­телыми заклепками крепится печатная плата с установленными на ней с двух сторон металлическими шинами.

Бескорпусные микросборки помещают непосредственно на метал-лические шины. На раме предусмотрены приливы для шарнирного соединения ячеек в блоке. Для крепления ячейки в блоке сделаны переходные втулки, через кото­рые проходят крепежные винты. Электрическое соединение с объединительной печатной платой блока выполнено с помощью гибкого печатного кабеля. Для отвода тепла от ячейки рама обладает хорошим тепловым контактом с шинами ячейки.

Ячейка, приведенная на рис. 6, состоит из печатной платы с бескорпус­ными МСБ, установленными с двух ее сторон на индивидуальные металлические шины. Ячейки имеют петли для шарнирного соединения ячеек в блоке. На пе­чатной плате предусмотрены отверстии для крепления ячейки в блоке с по­мощью винтов. Электрическое соединение ячейки выполнено с помощью объем­ных проводов, которые для предохранения от слома прошиваются через два ря­да неметаллизированных отверстий, находящихся на печатной плате.

На рис. 7 приведена конструкция герметичной ячейки с эле­ментами коммутации и бескорпусными МСБ. Конструкция состо­ит из прямоугольного корпуса, на дно которого наклеена пленка или установлена коммутационная плата. В отверстия на задней стороне корпуса пластмассой запрессованы два гибких кабеля из фольгированного полиимида, на котором методом химического травления сформированы соединительные проводники и контакт­ные площадки. В контактных площадках закрепляются выводы электрического соединителя СНП34. Гибкий кабель помещен между двумя пластмассовыми прокладками, надетыми на выво­ды электрического соединителя. Сверху корпус закрыт крышкой, которая пайкой герметизируется с корпусом ячейки. По бокам корпуса находятся приливы, используемые для установки ячейки в стандартные направляющие БНК2; ячейки крепят винтами. На нижней стороне корпуса ячейки есть углубление для установки штыревых радиаторов, изготовленных из титановой ленты.

Р
ис. 7. Герметичная ячейка с бескорпусными МСБ

На рис. 8 и 9 приведены типовые конструкции герметич­ных блоков с бескорпусными микросборками. Блок герметичной разъемной конструкции (рис. 9) состоитиз набора ячеек на бескорпусных МСБ (см. рис. 3), установленных параллельно передней панели. Корпус блока литой, выполнен из алюминиево­го сплава Ал9. Герметизация блока осуществлена с помощью резиновых прокладок, установленных в пазы корпуса блока, и крепления болтами боковых крышек блока. Корпус и боковые съемные крышки блока оребрены. Для крепления ячеек в блоке на верхней и нижней стенках корпуса предусмотрены групповые направляющие и приливы с резьбовыми втулками. На передней панели размещен разъем, герметизируемый через уплотнительную прокладку, и трубка для откачки воздуха и заполнения сухим азотом. На задней панели корпуса блока расположены штыри-ловители. Внутриблочное электрическое соединение между ячей­ками осуществляется с помощью накидных перемычек, установ­ленных на штыри объединительной печатной платы.

Для улучшения теплового контакта между прижимными план­ками ячеек и оребренной боковой крышкой блока проложена гоф­рированная алюминиевая прокладка.

Рис. 8. Блок герметичной разъемной конструкции: 1 - ячейка; 2 - панель передняя; 3 - стенка; 4 - панель задняя; 5 - крышка боковая

Рис. 9. Блок герметичный книжной конструкции с воздуховодом:1 - ячейка; 2 - панель передняя; 3 - кожух; 4 - плата; 5 - кабель гибкий печатный; 6 - воздуховод

Блок герметичной книжной конструкции с вертикальной осью раскрытия ячеек, представленный на рис. 9, состоит из набора ячеек на бескорпусных МСБ (см. рис. 4), которые установлены пер­пендикулярно к передней панели блока. Передние и задние панели выполнены литьем под давлением из алюминиевого сплава Ал9 и имеют покрытие. Кожух блока сварной, выполнен из титанового сплава с покрытием с последующим горячим лужением припоем ПОС-61. Боковые стенки кожуха имеют ребра жесткости.

Герметизация блока осуществлена пайкой кожуха с передней и задней панелями блока. На передней панели блока расположе­ны разъем, герме-тизируемый через уплотнительную прокладку, трубка для откачки воздуха и заполнения блока сухим азотом, а также отверстия для подвода и отвода воздуха в коллектор воздуховода. На передней панели блока расположены штыри-ловители.

Внутриблочные электрические соединения выполнены с по­мощью гибких печатных кабелей и объединительной печатной платы. Тепло от блока отводится с помощью воздуха, подаваемо­го принудительным способом по герметичным воздуховодам.

Рис. 10. Блок герметичный книжной конструкции с вентилятором: 1 - вентилятор; 2 - панель передняя; 3 - ячейка; 4 - плата объединительная; 5 - кабель гибкий печатный; 6 - панель задняя; 7 - стенка

Блок герметичный книжной конструкции с вертикальной осью раскрытия ячеек (рис. 10) состоит из набора ячеек на бескорпусных МСБ (см. рис. 5), которые установлены перпендикулярно к пе­редней панели блока. Корпус блока сварной. Детали корпуса блока выполнены из материала АМг, передние и задние панели блока - литьем под давлением из алюминиевого сплава Ал9.

Все детали корпуса и панели имеют покрытие. Гермети­зация блока осуществлена пайкой корпуса и передней панели блока.

Герметичный блок книжной конструкции с горизонтальной осью раскрытия ячеек, представленный на рис. 11, состоит из двух ячеек (см. рис. 6) на бескорпусных МСБ, установленных перпендикулярно к панели блока. Рама блока выполнена литьем под давлением из алюминиевого сплава Ал9. Панель и кожух блока сделаны из титанового сплава и имеют покрытие с последующим горячим лужением припоем. Герметизация блока осу­ществлена пайкой кожуха с панелью. В корпусе для фиксации рамы с ячейками имеются упоры, а для крепления ячеек в панели и раме - приливы. На панели ус­тановлены электрические соединители, полученные с помощью глазковых много-выводных соединений, трубка для откачки возду­ха и заполнения сухим азотом и резьбовые штыри-ловители. Внутриблочные электрические соединения выполнены с помощью объ­емных проводов.

Набор рассмотренных НК блоков позволяет решать конструк­торские задачи для широкого ряда разработок аппаратуры . При этом следует иметь в виду, что блоки с общей герметизацией ха­рактеризуются высокой плотностью упаковки элементов.

Рис. 11. Блок герметичный книжной конструкции: 1 - ячейка; 2 - рама; 3 - панель; 4 - провод объемный; 5 – кожух

Герметизация блоков , содержащих бескорпусные ИС и МСБ, осуществляется с целью предотвращения воздействия внешних климатических факторов на бескорпусные элементы, входящие в состав ИС и МСБ, т. е. герметизируют для установления внутри корпуса блока допустимой относительной влажности и состава газового наполнителя, что определяется техническими условиями на входящие в состав блока бескорпусные элементы.

Для создания наиболее благоприятного микроклимата внут­ри корпуса блока внутренний объем блока через откачную труб­ку заполняется инертной средой в виде различных газов или сме­сей газов. Для того чтобы увеличить срок эксплуатации или хра­нения герметичных блоков до профилактического ремонта, внут­ренний объем блока заполняется инертной средой с избыточным давлением не более 12 10 4 Па через откачные трубки(рис.12, а...д ).

Рис. 12. Конструкции откачных трубок: 1 - корпус; 2 - трубка; 3 - втулка; 4 - компаунд; 5 - стакан; 6 - резиновый уплотнитель; 7 -шарик; 8 - штифт

Для создания инертной среды используют сухой азот, который по своим тепловым характеристикам приравнивается к воздуху. Проводятся также работы по использованию в качестве инертной среды различных жидких нетоксичных раст­воров, обладающих теплопроводностью на порядок выше, чем у сухого азота. Однако не всегда полностью изучено влияние этих жидкостей на электрические параметры бескорпусных элементов и соответственно на их надежность.

Герметичность блоков обеспечивается герметизацией их кор­пусов и внешних электрических соединителей, которые устанав­ливаются на лицевой или задней панелях корпуса. Учитывая специфику герметизации корпусов блоков и электрических со­единителей, эти вопросы необходимо рассматривать отдельно.

Герметизация корпусов блоков может осуществляться следую­щими способами: сваркой основания и корпуса блока; паяным де­монтируемым соединением корпуса (основания) с крышкой (ко­жухом) блока; уплот-нительной прокладкой. Выбор способа гер­метизации определяется требо-ваниями, предъявляемыми к бло­кам в зависимости от условий эксплуатации, габарита (объема) блока, а также материалов, используемых в корпусе и в основа­нии блока.

Герметизация с помощью сварки . Вскрытие таких блоков возможно только с помощью механиче­ского снятия сварного шва, что влечет за собой обязательное по­падание металлической пыли на бескорпусные элементы и соот­ветственно их отказ.

Герметизация с помощью пая­ного демонтируемого соединения . К элементам паяного со­единения конструкции блока предъявляются следующие требо­вания: для устранения перегрева блока в момент пайки в элементах конструкции корпуса крышки (вблизи паяного соединения) необ­ходимо предусмотреть тепловую канавку; прокладку следует вы­полнять прямо-угольного сечения из термостойкой резины; диа­метр проволоки должен быть меньше ширины зазора между крышкой и корпусом на 0,1...0,2 мм.

В паяном соединении проволока над прокладкой укладывает­ся по всему периметру соединения. Один из концов проволоки вы­водится через паз в крышке из зоны соединения и обычно укла­дывается в тепловую канавку. Расстояние по всему периметру соединения заполняется легкоплавким припоем. Данное паяное соединение позволяет демонтировать (вскрывать корпус) блока до трех раз.

В целях предотвращения нарушения герметичности блока на­ружная поверхность паяного соединения не должна быть устано­вочной поверхностью блока и все элементы крепления блоков должны располагаться на максимально возможном расстоянии от паяного соединения.

Герметизация с помощью уплотнительных прокладок . Конструктив­ные элементы герметизации корпусов блоков уплотнительными прокладками приведены на рис. 13.

Герметизация и конструкции специальных электрических со­единителей, герметичность которых осуществляется с помощью металлостеклянных соединений, имеют ряд специфических аспек­тов, поэтому этот вопрос следует рассмотреть подробнее. Все металлостеклянные соединения, которые используются при проекти­ровании микросхем, микросборок и герметичных блоков микро­электронной аппаратуры, можно разделить на следующие типы: глазковые, дисковые, окошечные и плоские.

Глазковые соединения применяются при изготовлении цоколей реле, оснований корпусов ИС и МСБ, гермовводов, металлических ножек электровакуумных приборов, вилок штепсельных электри­ческих соединителей и подобных изделий.

Дисковые соединения используются при изготовлении много­контактных токовых вводов, вилок электрических соединителей, узлов электровакуумных приборов, оснований корпусов.

Окошечные соединения применяются при изготовлении окон резона-торов, высокочастотных фильтров и смотровых окон при­боров, необходимых для визуального контроля.

Плоские соединения используются при изготовлении оснований метало-стеклянных корпусов ИС и МСБ с прямоугольным сече­нием выводов.

Рис. 13. Герметизация корпуса блоков уплотнительной прокладкой: 1 - основание блока; 2 - прокладка уплотнительная; 3 - корпус блока; 4 - болт; 5 – гайка

Металлостеклянные соединения в зависимости от используе­мых матери-алов подразделяются на согласованные и несогласо­ванные (сжатые) спаи. Под согласованными спаями понимаются соединения, в которых коэффициенты температурного расширения (КТР) спаиваемых материалов (стекло-металл обоймы) равны или мало отличаются друг от друга. В свою очередь, под несо­гласованными спаями понимаются соединения, в которых КТР спаиваемых материалов (стекло - металл обоймы) резко отлича­ются друг от друга в интервале температур от комнатной до тем­пературы размягчения стекла. Поэтому при проектировании от­дельных узлов микроэлектронной аппаратуры необходимо боль­шое внимание уделять выбору материалов и соответственно их взаимному сочетанию.

Под глазковыми соединениями следует понимать соединения, в которых один или несколько выводов впаяны (оплавлены) в металлическую обойму через индивидуальный для каждого вывода изолятор. Такие варианты конструкций глазковых соединителей представлены на рис. 14 и 15.

Дисковые соединения выполняются в виде согласованных и несогла-сованных спаев (рис. 16 и 17). В дисковом соединении (рис. 16) стеклянный изолятор располагают симметрично по высоте
. Минимальное расстояние между вы­водами и между выводом и стенкой обоймы должно быть не менее 0,8 от диаметра вывода.

Рис. 14. Глазковые одновыводные соединения:

а - конструкция с отбортовкой (или вытяжкой) глазка в тонколистовом металле; б и в - конструкции с пробивкой (или сверлением) глазка в толстостенном металле; 1 - металли­ческая обойма; 2 - вывод (стержень или трубка); 3 - стеклянный изолятор

Рис. 15. Глазковые многовыводные соединения: а - конструкция с отбортовкой глазка в тонколистовом металле: б - конструкция с про­бивкой или сверлением в толстостенном металле; 1 - металлическая обойма; 2 - вывод (стержень или трубка); 3 - стеклянный изолятор

Окошечные соединения могут быть выполнены методом непо­средственного спаивания стекла с металлом или при помощи легкоплавкой эмали.

Под плоскими соединениями следует понимать соединения, в которых металлические детали спаяны со стеклом по плоской поверхности.

Рис. 16. Дисковые соединения. Рис. 17. Дисковые соединения.

Согласованный спай: 1 - Несогласованный спай: 1

металлическая обойма; 2 - вывод; 2 – металлическая обойма;

вывод; 3 – стеклянный изолятор 3 – стеклянный изолятор

Технология монтажа на поверхность не нова, но в отечественной литературе она, к сожалению, освещена недостаточно полно. Предлагаемый ряд статей, посвященный этой тематике, поможет читателям более глубоко разобраться в особенностях технологий монтажа электронных модулей. В данной статье описан ряд конструкций типичных электронных модулей и особенности технологического процесса сборки каждого их типа.

Современные электронные компоненты

Тип монтажа модулей определяется в первую очередь количеством сторон, на которые осуществляется монтаж (одно- или двусторонний), и номенклатурой используемых компонентов. Поэтому описание типов монтажа логично предварить кратким обзором компонентов и корпусов. Основным, наиболее важным для технолога критерием разделения электронных компонентов на группы является метод их монтирования на плату - в отверстия или на поверхность. Именно он в основном и определяет технологические процессы, которые необходимо использовать при монтаже.

В таблице приведена информация по наиболее распространенным корпусам компонентов: названия, изображения, габариты, шаг выводов. Все размеры, за исключением особо оговоренных, приведены в милах (1 mil = 0,0254 мм).

Рис. 1. ТНТ-компоненты
Рис. 2. SMD-компоненты

Таблица

Компоненты, монтируемые в отверстия
Группа Типы корпусов в группе Габариты корпусов Шаг выводов Рис.
С одним рядом выводов - SIL TO-92TO-202, TO-220 и др. 380x190, 1120x135,420x185… 100 мил Рис. 1, а
С двумя рядами выводов - DIL MDIP, CerDIP 250x381…577x2050 100 мил Рис. 1, б
С радиальными выводами TO-3, TO-5, TO-18 - - Рис. 1, в
С осевыми выводами - - Рис. 1, г
Решетки - Grid CPGA, PPGA 286x286…2180x2180 мил 20…100 мил Рис. 1, д
Компоненты, монтируемые на поверхность
С двумя рядами выводов - DIL «SOT-23, SSOP, TSOP, SOIC» 55x120…724x315 мил 25…30 мил Рис. 2, а-б
С выводами по сторонам квадратного корпуса - Quad Package LCC, CQJB, CQFP, CerQuad, PLCC, PQFP 350х350 мил …20x20 мм 50 мил…0,5 мм Рис. 2, в
Решетки - Grid BGA, uBGA - 0,75 мм (uBGA) Рис. 3, а-б

Наиболее интересны с практической точки зрения, по мнению автора, корпуса BGA, а точнее mBGA, которые имеют 672 вывода с шагом 0,75 мм. Верхняя часть корпуса BGA не представляет особого интереса, более примечательными являются его нижняя часть и внутреннее устройство этой упаковки компонентов. На рис. 3, а изображена нижняя поверхность корпуса BGA, на которой видны шариковые выводы, а на рис. 3, б - вид этого корпуса в разрезе.

Рис. 3. Корпус BGA

Приведенный выше краткий обзор современных компонентов дает представление о том, насколько велико число возможных вариантов реализации монтажа модулей при различном расположении их на плате. Кроме того, в обзоре не была представлена еще одна группа - группа нестандартных компонентов (odd form components).

Виды монтажа можно разделять по различным параметрам: по количеству используемых для монтажа сторон платы (одно- или двусторонний), по типам используемых компонентов (поверхностный, выводной или смешанный), по их расположению на двустороннем модуле (смешанно-разнесенный или смешанный). Рассмотрим наиболее распространенные из них, а также последовательность технологических операций для каждого вида монтажа.

Виды монтажа

Поверхностный монтаж

Поверхностный монтаж на плате может быть односторонним и двусторонним. Число технологических операций при этом виде монтажа минимально.

При одностороннем монтаже (рис. 4, а) на диэлектрическое основание платы наносят припойную пасту методом трафаретной печати. Количество припоя, наносимое на плату, должно обеспечивать требуемые электрофизические характеристики коммутируемых элементов, что требует соответствующего контроля. После позиционирования и фиксации компонентов выполняют операцию пайки путем оплавления дозированного припоя. В завершение технологического цикла производится контроль паяных соединений, а также функциональный и внутрисхемный контроль. На рис. 4, а изображены поверхностно-монтируемые компоненты различных видов: относительно сложно монтируемые компоненты в корпусах PLCC и SOIC и легко монтируемые чип-компоненты.

Рис. 4. а,б

Для двустороннего поверхностного монтажа (рис. 4, б) возможны различные варианты реализации. Один из них предполагает начало технологического процесса с операции нанесения паяльной пасты на нижнюю сторону платы. Затем в местах установки компонентов наносят расчетную дозу клея и производят установку компонентов. После этого в печи клей полимеризуется и происходит оплавление пасты припоя. Плата переворачивается, наносится паста припоя и устанавливаются компоненты на верхнюю сторону платы, после чего верхняя сторона оплавляется. В этом случае для пайки компонентов используются печи с односторонним нагревом.

При другом варианте реализации двустороннего поверхностного монтажа используются печи с двусторонним нагревом.

Интересен вопрос о необходимости нанесения клея на плату. Эту операцию выполняют с целью предотвращения отделения компонентов от платы при ее переворачивании. Существующие расчеты показывают, что большинство компонентов не упадут с платы даже при ее переворачивании, поскольку будут держаться за счет сил поверхностного натяжения припойной пасты. По этой причине операцию нанесения клея нельзя отнести к обязательным.

Смешанно-разнесенный монтаж

При смешанно-разнесенном монтаже компоненты, устанавливаемые в отверстия (THT-компоненты), располагаются на верхней стороне платы, а компоненты для поверхностного монтажа - на нижней. В этом случае обязательной является операция пайки двойной волной припоя. Смешанно-разнесенный монтаж компонентов показан на рис. 5.

Рис. 5. Смешанно-разнесенный монтаж

Реализация такого вида монтажа предполагает следующую последовательность операций: на поверхность платы наносится дозатором клей, на который устанавливаются SMD-компоненты, клей полимеризуется в печи, после чего производится установка компонентов в отверстия, промывка модуля и выполняются операции контроля.

Возможен альтернативный вариант, при котором сборку начинают с установки компонентов в отверстия платы, после чего размещают поверхностно-монтируемые компоненты. Он применяется тогда, когда формовка и вырубка выводов обычных компонентов осуществляется при помощи специальных приспособлений заранее, иначе компоненты, монтируемые на поверхность, будут затруднять обрезку выводов, проходящих через отверстия платы. Компоненты для поверхностного монтажа при повышенной плотности их размещения целесообразно монтировать в первую очередь, что требует минимального количества переворотов платы в процессе изготовления изделия.

Смешанный монтаж

Примером смешанного монтажа является установка на верхней стороне платы и SMD-, и ТНТ-компонентов (монтируемых в отверстия), а на нижней стороне - только SMD-компонентов. Это самая сложная разновидность монтажа (рис. 6).

Рис. 6. Смешанный монтаж

Возможны различные варианты ее реализации. При одном из них сначала на нижнюю сторону печатной платы методом дозирования наносят клей, а на нанесенный клей устанавливают SMD-компоненты. После проведения контроля установки компонентов проводят отвердение клея в печи. На верхнюю сторону платы наносится паяльная паста, а на нее затем устанавливаются SMD-компоненты. Нанесение паяльной пасты возможно как методом трафаретной печати, так и методом дозирования. В последнем случае операции нанесения клея и паяльной пасты можно проводить на одном оборудовании, что сокращает затраты. Однако нанесение паяльных паст методом дозирования непригодно при промышленном производстве из-за низкой скорости и стабильности процесса по сравнению с трафаретной печатью и оправдано только в условиях отсутствия трафарета на изделие или нецелесообразности его изготовления. Такая ситуация может сложиться, например, при опытном производстве большой номенклатуры электронных модулей, когда из-за большого числа обрабатываемых конструктивов и малых серий затраты на изготовление трафаретов значительны.

После установки SMD-компонентов на верхнюю сторону платы производится их групповая пайка методом оплавления припойной пасты, нанесенной на трафаретном принтере, или методом дозирования. После этой операции технологический цикл, связанный с установкой поверхностно монтируемых компонентов, считается завершенным.

Далее, после ручной установки компонентов в отверстия платы производится совместная пайка всех SMD-компонентов, ранее удерживавшихся на нижней стороне платы при помощи отвержденного адгезива и уже установленных выводных компонентов.

В конце технологического цикла выполняют операции визуальной инспекции пайки и контроля.

При другом варианте реализации смешанного монтажа предполагается иная последовательность выполнения операций. Первым этапом является нанесение припойной пасты через трафарет, установка на верхней стороне платы сложных компонентов для поверхностного монтажа (SO, PLCC, BGA) и пайка расплавлением дозированного припоя. Затем, после установки компонентов в отверстия платы (с соответствующей обрезкой и фиксацией выводов), плата переворачивается, на нее наносится адгезив и устанавливаются компоненты простых форм для поверхностного монтажа (чип-компоненты, компоненты в корпусе SOT). Они и выводы компонентов, установленных в отверстия, одновременно пропаиваются двойной волной припоя. Возможно также использование в составе одной линии оборудования, обеспечивающего эффективную пайку компонентов (с верхней стороны платы) расплавлением дозированного припоя и пайку (с нижней стороны платы) волной припоя.

Необходимо отметить, что в технологическом процессе, реализующем смешанный монтаж, возрастает количество контрольных операций из-за сложности сборки при наличии компонентов на обеих сторонах платы. Неизбежно возрастают также количество паяных соединений и трудность обеспечения их качества.

Односторонний выводной и поверхностный монтаж

Такая технология носит в мировой практике название технологии оплавления припойных паст (reflow) и является одной из стандартных в технологии монтажа на поверхность (рис. 7).

Рис. 7. Односторонний монтаж SMD и ТНТ

Сборка модулей такого типа осуществляется следующим образом: на поверхность платы наносится припойная паста, на которую устанавливают SMD-компоненты; затем паста оплавляется в печи, устанавливаются THT-компоненты, проводится пайка волной припоя, после чего осуществляют промывку и контроль собранного модуля.

Односторонний выводной монтаж

Технология сборки таких печатных плат (рис. 8) является стандартным сборочно-монтажным циклом с применением пайки волной припоя. Этот цикл состоит из операций установки выводных компонентов, их пайки на установке пайки волной и контрольных операций. Установка компонентов может быть как ручной, так и полуавтоматической. Выбор оборудования определяется требуемой производительностью. Автоматизация такого типа монтажа является минимальной, а сама реализация - предельно простой.

Рис. 8. Односсторонний монтаж ТНТ

Данная публикация является первой статьей из цикла, посвященного поверхностному монтажу. Логичным ее продолжением станет освещение вопроса состава производственной линии, на которой реализуется этот вид монтажа: необходимость каждого вида оборудования, его технические характеристики и роль в технологическом процессе, требуемый состав персонала и его квалификация, а также другие вопросы, возникающие при создании сборочно-монтажного производства.

Литература

  1. Schmits J., Heiser G., Kukovski J. Взгляд в будущее. Технологические тенденции развития электронных компонентов и сборки электронных модулей на печатных платах. Перевод и адаптация А. Калмыкова. Компоненты и технологии, № 4, 2001.
  2. www.pcbfab.ru.
Автор выражает благодарность Р. Тахаутдинову за помощь в подготовке иллюстраций.

При производстве радиоэлектронной аппаратуры на базе мик­роэлектроники к выполнению соединений микроэлементов внут­ри микросхем, а также к монтажу микросхем в узлы и блоки предъявляются специфические требования.

Методы монтажа, пайки и сварки, используемые при производ­стве микросхем, отличаются от методов, используемых при произ­водстве функциональных узлов и микромодулей. Это обусловлено тем, что большинство полупроводниковых материалов и диэлектри­ческих подложек из керамики и стекла обладают низкой теплопро­водностью, узкой зоной пластичности и малой сопротивляемостью к воздействию термических и механических напряжений.

Полупроводниковые интегральные микросхемы в отличие от тонкопленочных имеют на порядок более высокую разрешающую способность рисунка, позволяющую увеличить плотность разме­щения микроэлементов (т. е. повысить степень интеграции). По срав­нению с толстопленочными интегральными микросхемами сте­пень интеграции повышается больше чем в сто раз.

Внутренний монтаж любых микросхем включает в себя техно­логические операции по установке и закреплению одной или не­скольких микросхем в корпусе и выполнению внутримикросхем-ных соединений. Для сборки и монтажа микросхем применяют различные установки. Так, для сборки кристаллов полупроводни­ковых интегральных микросхем размером от 0,6 х 0,6 до 1,8 х 1,8 мм используется установка ЭМ-438А, а для монтажа нескольких кри­сталлов в один корпус - установка ЭМ-445. Крепление кристалла микросхемы осуществляется методом пайки или приклейкой.

Внутримикросхемные соединения между напыленными на кри­сталлы контактными площадками микросхемы и выводами ее корпуса выполняют с помощью проволочных перемычек, в каче­стве которых используются медные, алюминиевые и золотые мик­ропровода толщиной от 8 до 60 мкм.

В зависимости от сочетания применяемых материалов и конст­рукции выводов при сборке микросхем для соединения использу­ется микросварка (термокомпрессионная, ультразвуковая, кон­тактная, электронно-лучевая, лазерная) или микропайка.

Наиболее широкое применение получили термокомпрессион­ная и ультразвуковая микросварка и микропайка.

Термокомпрессионная микросварка заключается в одновремен­ном воздействии на свариваемые металлы давления и повышен­ной температуры. Соединяемые металлы разогреваются до опре­деленной температуры (начала рекристаллизации), при которой начинается сцепление (диффузия) очищенных от окислов по­верхностей металлов при приложении даже небольшой нагрузки. Этот способ позволяет присоединять электрические выводы тол­щиной не более нескольких десятков микрон к контактным пло­щадкам кристаллов, размеры которых не превышают 20...50 мкм. В процессе соединения микропровод из алюминия или золота прикладывают к кристаллу полупроводника и прижимают на­гретым стержнем.

Основными параметрами, определяющими режим термокомп­рессионной микросварки, являются удельное давление, темпера­тура нагрева и время сварки.

При термокомпрессионной микросварке необходим тщатель­ный контроль этих параметров.

Область применения термокомпрессионной микросварки очень широка. Она является основным методом присоединения выводов к полупроводниковым кристаллам, используется также для при­соединения проволочных микропроводников к напыленным кон­тактным площадкам микросхем, для монтажа БИС и микросбо­рок. С помощью термокомпрессионной микросварки осуществля­ется групповая сварка микросхем с планарными выводами, а так­же прецизионная микросварка элементов с минимальной толщи­ной проводников (до 5 мкм).

Ультразвуковая микросварка позволяет получить надежное со­единение металлов с окисными поверхностями кристаллов при минимальном тепловом воздействии на структуру чувствительных к нагреву элементов микросхем. Этот вид микросварки применя­ется для соединения металлов, имеющих различные электро- и теплопроводность, а также для соединения металлов с керамикой и стеклом.

Отечественной промышленностью выпускаются ультразвуковые установки для присоединения микропровода или микроленты (ди­аметром до 60 мкм) из алюминия и золота к кристаллам полупро­водниковых микросхем, для осуществления внутрикорпусного мон­тажа микросхем, а также для сборки БИС и микросборок.

Оборудование для монтажа полупроводниковых приборов и микросхем методом ультразвуковой микросварки состоит из уль­тразвуковой сварочной установки, принцип действия которой ос­нован на возбуждении преобразователем механических колебаний ультразвуковой частоты в месте свариваемых деталей, и устрой­ства для фиксации микросхемы.

В качестве преобразователей электрической энергии в механи­ческие колебания используются магнитострикционные и пьезоэ­лектрические устройства.

При ультразвуковой сварке неразъемное соединение металлов образуется в результате совместного воздействия на детали меха­нических колебаний с частотой 15...60 кГц, относительно неболь­ших сдавливающих усилий и теплового эффекта, сопровождаю­щего сварку. В результате в сварной зоне появляется небольшая пластическая деформация, которая обеспечивает надежное соеди­нение деталей.

В последние годы для монтажа микросхем широко применяет­ся комбинированный способ, основанный на термокомпрессии с косвенным импульсным нагревом и наложением ультразвуковых колебаний.

Микропайка может осуществляться мягкими и твердыми при­поями. Основными достоинствами микропайки являются ее отно­сительная простота и возможность соединения деталей сложной конфигурации, что трудно выполнить при микросварке.

К мягким припоям относятся сплавы олова и свинца, индия и галлия, олова и висмута, обладающие низкой температурой плав­ления (обычно 140...210 °С). Эти припои наиболее часто приме­няются при пайке в интегральных микросхемах.

При микропайке микросхем мягкими припоями соединяемые металлы должны быть металлургически и химически совместимыми, не должны образовывать сплавов с большим сопротивлением и ин­терметаллических хрупких соединений в месте контакта; припои дол­жны быть инертными при рабочей температуре схемы и полностью удаляться с места соединения и с окружающей его поверхности.

К твердым (высокотемпературным) припоям относятся сплавы на основе серебра ПСр45 и ПСр50, имеющие температуру плав­ления до 450... 600 °С. Эти припои используются для герметизации корпусов микросхем, для соединения серебряных или посереб­ренных деталей (так как припои на основе олова - свинца ра­створяют значительное количество серебра, изменяя характерис­тики контакта) и др.

В настоящее время разработаны высокотехнологичные спосо­бы микропайки. Одним из таких способов является микропайка в атмосфере горячего (до 400 °С) инертного газа или водорода, при которой предварительно облуженный участок обдувается из ми­ниатюрных сопл горячей струей газа. Этот способ обеспечивает высокую производительность, кроме того, позволяет исключить применение флюса.

Процесс пайки упрощается при использовании дозированного припоя в виде таблеток или пасты, который предварительно на­носится на места соединений. Этот способ обеспечивает точ­ный контроль количества тепла в месте сварки, а при использова­нии средств автоматики позволяет регулировать время протека­ния тока и его величину.

Для механизированной микропайки характерны шаговые пе­ремещения паяльного инструмента, обычно осуществляемые по программе, и прижим инструментом паянного соединения во вре­мя пайки. Автоматизация процессов пайки при соединении ин­тегральных микросхем с монтажной платой наряду с повышени­ем производительности труда обеспечивает повышение качества соединений.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра электронной техники и технологии
РЕФЕРАТ
на тему:
«Подготовка к разработке техпроцесса сборки электронно-оптических систем»
МИНСК, 2008

Перед разработкой техпроцесса сборки необходим анализ технических условий (ТУ) на прибор, входящих в комплект документации на прибор вместе с альбомом чертежей, техническим описанием и паспортом. Анализ ТУ является первым этапом технологической подготовки производства прибора. ТУ показывают, в каких условиях должен работать прибор, какие основные характеристики он должен иметь и какова методика проверки соответствия основных характеристик прибора требованиям ТУ.
В ТУ могут входить директивные рекомендации по методам и средствам регулирования выходных параметров прибора, а также указание: изменением каких характеристик и каких элементов целесообразно регулировать те или иные параметры прибора.
ТУ имеет следующие типовые разделы:
- определение и назначение;
- комплектность и связь с чертежами;
- технические требования;
- маркировка и клеймение;
- порядок предъявления и приемки;
- приемо-сдаточные испытания;
- периодические контрольные испытания;
- упаковка, маркировка упаковки, хранение на складах и транспортировка;
- приложение.
В разделе “Определение и назначение” указывается, на какие приборы распространяется ТУ и в какие САУ эти приборы входят.
В разделе “Технические требования” причисляются основные технические требования, предъявляемые к прибору.
В разделе “Приемо-сдаточные испытания” указываются последовательность, объем и методика приемо-сдаточных испытаний прибора.
Для проверки соответствия выпускаемых приборов всем требованиям раздела “Технические требования” приводят контрольные испытания небольшой партии приборов.
В разделе “Контрольные испытания” приводятся данные по периодичности, последовательности, по объему и методикам контрольных испытаний в соответствии с отдельными требованиями.
Раздел “Технические требования” содержит как общие для всех приборов или блоков требования, так и специфические, свойственные только для данного типа прибора или блока. К общим требованиям относятся:
- соответствие конструкции чертежам;
- внешний вид;
- покупные изделия и материалы;
- характеристики электропитания;
- температурный интервал работы;
- электрическое сопротивление изоляции;
- омическое сопротивление изоляции;
- виброустойчивость;
- устойчивость к воздействию линейных ускорений;
- устойчивость к воздействию ударных нагрузок;
- гарантийный срок службы.
Одними из основных специфических требований, присущих только данному типу прибора, являются его нормируемые согласно ГОСТ 8.009 метрологические характеристики.
Соответствие прибора техническим требованиям устанавливается в ходе приемо-сдаточных испытаний. Соответствие некоторым требованиям можно установить только в результате контрольных периодических испытаний, включающих и испытание на отработку гарантийного срока службы. Поэтому такому испытанию подвергаются небольшие партии приборов.
Определение показателей технологичности конструкции приборов
Технологичным является такое изделие, которое при условии выполнения технических требований более удобно в эксплуатации и позволяет при данной серийности производства изготовить его с минимальными затратами труда, материалов и с наименьшим производственным циклом.
Исходя из этого положения, строится методика определения показателей технологичности конструкции приборов. Основная идея методики заключается в том, что технологичная конструкция изделия обеспечивает наибольшую производительность труда , снижение затрат и сокращение времени на проектирование, технологическую подготовку производства, изготовление, техническое обслуживание и ремонт изделия при обеспечении необходимого его качества.
Показатели технологичности используются для:
а) количественной оценки технологичности конструкции прибора перед передачей его в серийное производство;
б) указания конструкторам требований по технологичности при выдаче задания на проектирование нового прибора.
Система показателей содержит:
а) базовые частные коэффициенты, к которым относятся коэффициенты освоенности К осв, унификации деталей К у.д. и унификации материалов К у.м. ;
б) комплексный коэффициент технологичности К тех.
Выражения для определения значений всех частных показателей технологичности должны для “идеального” прибора стремиться к 1; фактические значения частных показателей технологичности К должны находиться в пределах
0 Значения коэффициентов определяются на основе анализа технической документации на изделие (сборочного чертежа и спецификации). Для расчета коэффициентов К осв и К у.д. составляется табл.1.
Таблица 1

Общее кол-во деталей (без крепежных)
В том числе
Кол-во крепежных деталей
собственные
заимствованные
стандартные
покупные












В табл.1 - число наименований деталей в изделии; - общее число деталей в изделии.
Например: пластина статора электродвигателя – одно наименование (n=1), а общее количество пластин статора в электродвигателе равно 25 (N=25).
Коэффициенты освоенности прибора и унификации его деталей определяются по формулам:
;
;
где N СТ, N ЗМ, N п, N Σ – соответственно число стандартных , заимствованных, покупных и общее число деталей в приборе; n Σ , n кр – число наименований деталей и число наименований крепежных деталей в приборе.
Примечания:
1. К стандартным относятся детали, охваченные ГОСТом и ОСТом, отраслевой нормалью.
2. К заимствованным относятся детали, взятые из других аналогичных разработок, и детали, изготовленные по стандартам предприятий (СТП).
3. К собственным относятся детали, которые применяются только в данном приборе и на которые разработаны чертежи в проекте на прибор.
4. Сборочные единицы, полученные литьем или прессованием из пластмасс, принимаются за одну деталь.
5. К крепежным деталям относятся гайки, винты, болты, шпильки, заклепки и т.п., а также монтажные провода, товарные знаки , изоляционные прокладки и т.п.
Коэффициент унификации материалов K у.м. определяется только для собственных деталей прибора по формуле
,
где - количество сорторазмеров материалов для изготовления собственных деталей прибора; - общее число наименований собственных деталей прибора.
Сорторазмер обусловлен маркой материала и определяющим размеров. Для определения составляется в табл. 2.
Таблица 2
Кол-во
Металлы
Пластмассы
Керамика
Сумма
черные
цветные
драгоценные
Сорторазмеров материалов
Сч
Сц
Сд
Сn
СК
СΣ
Собственных деталей



nn
nK

Комплексный коэффициент технологичности определяется как произведение базовых частных коэффициентов

Для установления контрольных значений комплексного коэффициента технологичности и его составляющих базовых частных коэффициентов технологичности, приемлемых для изделий серийного производства, в табл. 3 приводятся допустимые наименьшие значения этих показателей, составленные на основе обобщения статистических данных анализа технологичности конструкции электромеханических приборов и функциональных приборов и функциональных элементов.
Таблица 3
Ктехн
Косв
Ку.д.
Ку.м.
0,45
0,70
0,80
0,80
Для приборов, имеющих К осв ≥0,85, К у.м. принимается равным 1 и не рассчитывается.
Построение технологических схем сборки.
4.1. Сборка изделия – дискретный во времени процесс , который состоит из отдельных переходов. Переход – наименьшая законченная часть технологического процесса , выполняемая без перерыва во времени. Упорядоченный набор переходов образует сборочную операцию.
4.2. Первым этапом разработки маршрутного технологического процесса сборки является построение технологической схемы сборки.
Процесс сборки сложного изделия состоит из операций, выполняемых не только последовательно, но и параллельно, а иногда и с циклами. Технологическая схема сборки является графической интерпретацией такого процесса. Наиболее ясно и полно отражают технологический процесс сборки схемы с базовой деталью. При построении технологической схемы сборки используются условные обозначения, представленные в табл. 4.
Таблица 4
Обозначение
Элемент

Материал

Деталь

1
Сб.01-01



Сборочная единица
SHAPE \* MERGEFORMAT

Сборочная операция
SHAPE \* MERGEFORMAT
Регулировочная операция
SHAPE \* MERGEFORMAT

Юстировочная операция



Покупной элемент

Сборочное или КЮ приспособление

Выделенный при частичной разборке или сборке элемент
SHAPE \* MERGEFORMAT
Линия направления сборки
SHAPE \* MERGEFORMAT
Сборочная операция

Рис.1. Один из вариантов технологической схемы сборки.
Правила построения технологических схем сборки
1. На основном изображении элемента в нижней половине указывается номер позиции по чертежу; в верхней половине – количество одинаковых элементов. На условном изображении материала указывается марка материала. Покупные элементы штрихуются в верхней половине.
2. Технологическая схема сборки начинается с изображения базовой детали или базовой сборочной единицы, выполняющей в данной конструкции роль корпуса или основания, а заканчивается изображением собранного изделия.
3. Сборочные единицы или детали, собираемые одновременно, присоединяются к линиям сборки в данной точке.
4. Несколько деталей или сборочных единиц, устанавливаемых после их предварительной сборки, но без образования сборочной единицы, присоединяются к дополнительной линии сборки в последовательности их соединения; дополнительная линия сборки подводится к основной в точке операции, на которой формируется сборочная единица с другими элементами изделия.
5. Сборочная единица, формируемая параллельно с основным изделием, строится на дополнительной линии сборки; а дополнительная линия сборки подводится к основной в точке сборки этой сборочной единицы с основным изделием.
6. Стрелка показывает направление сборки. При частичной разборке стрелка направлена от операции к элементу.
7. Знаки контрольных и регулировочных операций подводятся к линии сборки непосредственно после той сборочной единицы, относительно которой они производятся.
8. Определяющий диаметр знака – 10 мм. На рисунке показан пример технологической схемы сборки.
Разработка технологического процесса сборки
Для разработки технологических процессов сборки необходимо иметь исходную информацию, которая, согласно ГОСТ 14.303-73 подразделяется на:
- базовую;
- руководящую;
- справочную.
Базовая информация включает данные, содержащиеся в конструкторской документации на изделие, и программу выпуска этого изделия.
Руководящая информация включает данные, содержащиеся в:
- стандартах всех уровней на технологические процессы и методы управления ими, оборудование и оснастку;
- документации на типовые и перспективные технологические процессы;
- производственных инструкциях.
Справочная информация включает данные, содержащиеся в каталогах и типажах прогрессивного оборудования, в справочниках , отчетах по НИР и ОКР и т.д.
Разработка технологического процесса начинается с составления технологического маршрута, который основывается на технологической схеме сборки и предусматривает определение, содержание операций и применяемого технологического оборудования.
Разработка операционного технологического процесса сборки включает комплекс взаимосвязанных работ
- определение содержания и последовательности операций;
- определение, выбор и заказ новых средств технологического оснащения (в том числе средств контроля и испытания);
- нормирование процесса;
- определение организационных форм реализации технологического процесса;
- оформление рабочей документации на технологические процессы.
Информационной основой при разработке технологических процессов являются типовые технологические процессы сборки конструктивно-технологических родственных изделий.
Проектирование технологического оснащения и специализированного оборудования
Автоматические системы и измерительные комплексы, используемые для целей навигации, стабилизации и других видов управления, состоят из различных деталей, механических, магнитных и иных устройств, электрических элементов, индуктивных элементов, сложных электронных функциональных устройств, созданных на базе микроэлектроники.
Многообразие этих деталей и сборочных единиц, высокие требования к точности, ресурсу и времени готовности изделий, постоянно растущие требования к производительности и качеству изделий требуют оснащения цехов приборостроительных предприятий специальным высокоточным оборудованием и оснасткой.
Часть этого оборудования и оснастки производится машино- и станкостроительными предприятиями, другая часть (специализированная) проектируется и производится на предприятиях приборостроительных отраслей.
Все оборудование, используемое при сборке, регулировке и испытаниях , можно разбить на следующие группы.
I. Группа оборудования общего назначения: вибрационные стенды, ударные установки, центрифуги, термобарокамеры, стенды транспортных нагрузок, камеры пыли, солнечной радиации, морского тумана, гигростаты, оборудование для проверки электрических параметров элементов (сопротивление изоляции, электрической прочности, емкости и т.д.), оборудование для проверки частотных характеристик изделия (анализатора спектра частот), универсальное оборудование для контроля линейных и угловых величин, сборочные прессы.
II. Группа оборудования, используемая непосредственно в сборочном процессе : вакуум-пропиточные установки, установки терморадиационной сушки, установки для промывки деталей перед сборкой, установки для комплектации опор перед сборкой (установки для проверки момента трения, жесткости элементов, контактного угла или частотных характеристик опор, тепловых характеристик опор), установки для статической и динамической балансировки, установки для статической и динамической балансировки, установки для заполнения приборов жидкостями и газами, установки для намотки элементов с обмотками общего назначения, установки для прошивки элементов запоминающих устройств, установки для формовки выводов электроэлементов, установки для укладки электроэлементов на негативные платы, установки для автомавтической пайки электроэлементов и контроля режимов пайки, вакуумные установки для дегазации элементов в процессе сборки, установки для размагничивания элементов, установки для контроля параметров зубчатых колес при сборке, установки для сварки, установки для размагничивания деталей и т.п.
III. Группа контрольно-испытательного оборудования: полуавтоматические и автоматические установки для контроля коммутации электрических и электронных элементов изделия, установки для регулировки, градуировки и поверки электроизмерительных приборов, установки и стенды для регулировки, испытаний, снятия статических и динамических характеристик электрических и электронных функциональных элементов изделий, установки для регулировки и испытаний гидро- и пневмоустройств изделий, установки для проверки потерь на трение в редукторах, установки для контроля кинематической точности редукторов, стенды и установки испытаний и регулировки приборов навигации и стабилизации.
Выбор средств технологического оснащения производится в соответствии с требованиями ГОСТ 14.301 и с учетом:
- типа производства и его организационной структуры;
- вида изделия и программы выпуска;
- характера намеченной технологии;
- максимального использования имеющейся стандартной оснастки и оборудования.
Специальные средства технологической оснастки проектируют на основе использования стандартных деталей и сборочных единиц.
Средства испытаний должны иметь устройства, воспроизводящие различные воздействия на испытуемые изделия, и устройства, измеряющие параметры испытуемого изделия. Точностные характеристики указанных двух групп устройств средств испытания должны быть указаны между собой.